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Abstract

The advent of Web 2.0 applications in the last ten years has profoundly changed the way people

communicate and interact with each other via the internet. Blogs, forums and social networks

have expanded the possibilities for people to exchange information; smartphones and tablets have

expanded the accessibility of such information. Beyond their undeniable in�uence on social activity,

these changes have also introduced important changes on economic activity, especially in the way

that companies think of�and deal with�their customers. An increasing number of players have now

come to realize that a truly e�cient Supply Chain is one that considers customers as an active part

of it, and Web 2.0 applications make this not only possible, but also easy and inexpensive. Inspired

by the innovative approach of startups like MyFab and by the trailblazing growth of startups

like Groupon, my doctoral thesis uses dynamic games to examine a series of innovative business

models where �rms use the internet to engage with their customer base and, by doing so, acquire

relevant information that they use to improve their business decisions, such as product development,

seasonal opening/closing, and pricing. My work also aims at providing recommendations for the

correct design of these novel business models, in order to induce truthful voluntary information

sharing on the part of customers and maximize the bene�t that the �rm derives from the acquired

information.

The �rst chapter of my dissertation, �Information Acquisition Through Customer Voting Sys-

tems�, co-authored with Prof. Karan Girotra, studies the use of customer-centric internet polls on

the part of a �rm to improve development and pricing decisions. In these systems, customers are

presented with a product design, and they can signal their preferences by casting a vote in favor of

it. Doing so typically results in some bene�t, such as a discount on the future price of the product.

Our analysis shows that, depending on the decision to be advised, the �rm and the customers may

have aligned or con�icting incentives, so that the customers may not be willing to reveal informa-

tion when it could be used against their interest�as is the case with pricing. We therefore develop

two advanced voting systems that tweak the incentive of the parties and allow the �rm to acquire

information even when used for pricing decisions.

The second and third chapters of my dissertation take a novel operational perspective on an

innovative discount structure, pioneered by Groupon and copied by many of its competitors in the

daily deal industry, in which a discounted deal is considered valid only if a pre-announced number

of customers show interest in the o�ering�we call these threshold discounting o�ers. Speci�cally,
v
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in the second chapter, �Operational Advantages and Optimal Design of Threshold Discounting

O�ers�, co-authored with Prof. Karan Girotra and Prof. Serguei Netessine, I consider a capacity-

constrained service provider who o�ers his services on di�erent time periods to a random-sized

population of strategic customers with heterogeneous service-time preferences. Demand seasonality

and inter-temporal demand substitution then arise endogenously in the model. I �nd that threshold

discounting o�ers outperform traditional demand manipulation approaches by boosting capacity

utilization and pro�t. Interestingly, the improvement persists even in the absence of economies of

scale, typically considered as a necessary requirement for group-discounting practices to yield any

bene�t. Further, by communicating to customers whether the discount is activated or not, the

�rm signals them the demand state, inducing a strategic response that further improves capacity

utilization. Hence, in contrast with the main message from the literature on strategic customers, we

show that in our context strategic customers are bene�cial to the �rm. We then evaluate alternative

design options of Threshold Discounting o�ers and provide recommendations on how to maximize

their bene�ts.

The third chapter of the dissertation, �Threshold Discounting O�ers: Unintended Consequences

and Incentive Con�icts�, co-authored with Prof. Karan Girotra and Prof. Serguei Netessine, further

expand the analysis on threshold discounting o�ers in several directions. Speci�cally, we consider

cases in which discounts are not just an e�ective way to smooth demand across time, but are also

an e�ective way to expand the market for a service. Within this context, we show that threshold

discounting outperforms traditional approaches for businesses that experience strong seasonality

together with su�cient variability in demand, but it may deliver little value beyond traditional

approaches when demand smoothing is not a priority for a �rm, and is even harmful in situations in

which capacity shortages are rare. Since it relies on acquiring information from customers, we show

that threshold discounting has diminished value when customers exhibit signi�cant transaction costs

to subscribe to discounted deals, making it more costly for the �rm to get them involved. Interesting,

our analysis is the �rst attempt to provide an explanation for why the much-celebrated threshold

discounting o�ers were unexpectedly discontinued by Groupon. A �rst explanation is based on a

lack of �t: we show that demand-starved �rms, which arguably constitute a big proportion of the

service providers featured in daily deals websites, derive no value from a threshold discounting o�er,

since the main advantage of these o�ers is to better match supply and demand, while such �rms

have too much supply relative to demand. A second explanation builds on incentive con�icts in the

vi
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supply chain that arise when these o�ers are channeled through an intermediary, as it is common

in the industry: in these cases, the intermediary has strong incentives to prefer a deal that has a

higher discount and a much lower threshold compared to what would be best for the �rm�and many

intermediaries are powerful enough to impose their terms on those service providers that want to be

featured in their websites. Overall, our results complement our analysis in chapter two by providing

elements that caution towards the use of threshold discounting in certain settings, and by using our

�ndings to explain what has happened in practice.
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Part 1. Information Acquisition Through Customer Voting Systems

We study the use of customer voting systems that enable information acquisition from strategic

customers to improve pricing and product development decisions. In these systems, the �rm presents

customers with a product design and gives them the opportunity to cast a vote on this design, a vote

that has costs and bene�ts. For example, voting may be cumbersome, but those that vote in favor

of a design may be eligible for a discount if and when the design gets developed. Customers vote and

the �rm interprets the voting outcome to discern customer interest in the product, and to advise on

further development and/or pricing of the product. We model the interactions between the �rm and

strategic customers in such systems as a game of incomplete information with voting embedded as a

subgame. Our analysis shows that the design and e�ectiveness of a voting system depends crucially

on the intended use of the acquired information. When the acquired information is used to advise on

development decisions, where �rm and customer interests are aligned, voting systems that reward

voters with discounts on subsequent purchase of products, in e�ect incentivizing voting in favor of

products, can elicit information from customers and improve pro�t. On the other hand, when the

information is used to set prices, a decision where �rm and customer interests are misaligned, such

systems are ine�ective. In these cases, voting systems that e�ectively incentivize customers to vote

against products or those that partially limit the �rm's future price �exibility should instead be

used to acquire information. While both solutions improve �rm pro�t, the former is preferred for

high-value products, while the latter is preferred when voting involves less e�ort. Based on data for

two representative products in the home decor industry, we �nd that these systems may increase

gross product pro�ts by up to 50% for development and by 20-30% for pricing.

1
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1. Introduction

Web 2.0 technologies, social networks, micro-blogs and location-based services have enabled �rms

to increasingly involve their customer base in business decisions. Such engagement, often referred to

as crowdsourcing, typically involves leveraging customer opinion and resources to improve business

processes that were traditionally performed opaquely to customers. Such engagement has displaced

traditional business models in some industries (cf. Wikipedia (Mikolaj et al. (2012))), while creating

new competing business models for product design, research and development, and problem solving

(we refer the reader respectively to Threadless (Brabham (2010)), Innocentive (Lakhani (2008))

and Hypios (Girotra and Terwiesch (2010))). This paper introduces a new business process, cus-

tomer voting systems, through which �rms can engage customers in a �rm's operational decisions,

speci�cally soliciting their input to improve product development and pricing decisions.

Voting systems were �rst prominently used by Threadless, where, in addition to designing new

products, the community could also vote for designs. Home decor retailer MyFab (Girotra and

Netessine (2011); Volongo and Girotra (2012)) re�ned voting systems by o�ering purchasing dis-

counts to voters with the explicit purpose of acquiring customer information. Founded in 2008,

MyFab had years of trailblazing growth, received over US$10 million in venture �nancing, and ex-

panded to new markets.1 Today, these voting systems are employed by �rms in other industries like

apparel and home decor retail.2

At an online retailer using a customer voting system, web visitors are presented with potential

product designs. Product speci�cations, detailed pictures, and in some cases, pricing information

are provided. Customers have the opportunity to cast a vote on the product design. Casting a

vote comes with costs and bene�ts. The most thoughtful implementations of voting systems impose

some barriers to casting a vote, such as identity veri�cation, email con�rmation of vote, etc. At

the same time, visitors that complete a vote are o�ered bene�ts, for example MyFab o�ers a 10%

discount to all customers that vote for a design and then buy the product if and when it is o�ered.3

After customer votes are tallied, the �rm uses the data to advise on pricing of the product and/or

1For more details on MyFab's business model, see �Furniture Shopping with the Crowds", Springwise, December, 16,
2008, http://goo.gl/AKkrb, �France's MyFab launches in US�, TechCrunch, February 12, 2010, http://goo.gl/6dSKC
2See "Garmz wants to be the fashion MyFab", TechCrunch, May 12, 2011, http://goo.gl/u1WAj, �How ModCloth's
Be-The-Buyer Program Crowdsourced Its Way To Success�, Inc., March 10, 2011 http://goo.gl/h8hf and �Made.com
raises ¿2.5m to assault designer home decor industry�, TechCrunch, March 21, 2010, http://goo.gl/AeFvv.
3�Mass customizing high style, low cost home decor�, Cooltownstudios, December 18, 2009 http://goo.gl/guOjy.

3
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on further development of the product. Finally, customers have the opportunity to buy the product

if it is developed.

Despite the growing use of customer voting systems and their celebration in the popular press,

these systems have not been rigorously studied. In particular, to the best of our knowledge there

is no systematic analysis of the relationship between the design of a voting system, the intended

use of acquired information, and the system's e�ectiveness in improving �rm pro�ts. While there is

a rich operations literature on information sharing within the supply chain, acquiring information

from strategic customers, as customer voting systems do, has largely been unaddressed. In the

absence of rigorous analysis, practicing �rms do not know when and how these voting systems

are e�ective and they experiment with di�erent systems by changing their voting design frequently.

Further, even when customers are engaged by the voting system, practicing �rms have too limited an

understanding of the drivers of customer behavior to use gathered information intelligently (Volongo

and Girotra (2012)).

This study builds a stylized model of �rm and strategic customer incentives in voting systems to

provide guidelines on their design and use. We model �rm and strategic customer interaction as a

dynamic game of incomplete information. We characterize equilibria where each player's strategies

yield a Bayesian Nash Equilibrium in every continuation game given Bayesian posterior beliefs. We

compute the value and costs of information acquisition, evaluate the system's e�ectiveness, and

understand the relative merits of di�erent systems.

Our analysis illustrates that the design and e�ectiveness of voting systems depends crucially

on the intended use of the information gathered from voting. We �nd that when a �rm intends

to use the information collected to identify if a product should be further developed, a decision

where customer and �rm interests are aligned (both want to develop the product when there is high

interest and vice versa), voting systems that incentivize voting in favor of products are e�ective

at acquiring customer information. On the other hand, when information is used to set prices, a

decision where customer and �rm interests are misaligned (the �rm wants to set high prices when

there is high interest, while the customers prefer low prices), systems that incentivize voting in favor

of products are ine�ective. The �rm must instead employ other systems, such as one with reverse

voting�systems that incent voting against products�to acquire and freely use information.

More speci�cally, for development decisions (Section 3), our analysis shows that a voting system

where customers that voted on a product are eligible for a su�ciently high purchasing discount if

4
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and when the product is developed, are e�ective in acquiring information. Customers vote only

when they value the product highly, in e�ect voting in favor of the product. This allows the �rm

to (partially) interpret customer preferences from voting outcomes. We characterize the bene�ts of

employing such systems and �nd that these are driven by a �ne balance between the information

gains and the cost of acquiring information from strategic customers. Speci�cally, these systems

are most bene�cial for �rms/products when the production, shipment and development costs are

higher, but their advantage decreases when cost of casting a vote is higher. Further, we unexpectedly

�nd that higher uncertainty in customer preferences may actually decrease the bene�ts of acquiring

information through voting systems.

The same voting systems with purchasing discounts that are e�ective for advising development de-

cisions are surprisingly ine�ective when it comes to advising pricing decisions (Section 4). Strategic

customers see no bene�t in voting in favor of products and signaling their information, information

that in this case may be used against their interest. This leads to an uninformative voting outcome.

We develop two novel voting systems that address the incentive con�icts inherent in using customer

information to set prices. In the �rst system, the �rm commits to a maximum price: this incentivizes

customers to vote in favor of products, while sacri�cing some pricing �exibility. In the second, we

propose a reverse voting system that �ips the customer incentives to vote, making them better o�

casting a vote when they do not like the product. These systems provide incentives for customers

to share information even when it is used to set prices. We compare both systems and �nd that

the latter, where customer incentives are reversed, is preferred for products of high value, whereas

the former, where the �rm commits to a maximum price, provides control on what information is

acquired and is preferred when the cost of casting a vote is low.

Numerical estimates, based on data for products typically sold by online retailers implementing

voting systems, indicate that appropriately designed voting systems may improve gross product

pro�ts by up to 50% for development, and between 20-30% for pricing decisions, compared to

business models without any voting mechanism.

Our paper makes three contributions. First, we develop an analytical framework to study cus-

tomer voting systems, novel and increasingly prominent systems that use customer engagement

technologies to advise on operational decisions. To the best of our knowledge, this is the �rst anal-

ysis of these systems. Second, we extend the supply chain literature on information sharing. While

5
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existing research has largely focused on information sharing between �rms and partners in the sup-

ply chain, we examine information sharing between a �rm and its strategically acting customers to

improve product development and pricing decisions, thanks to the use of customer-engaging voting

systems. Finally, we provide practical guidelines on the design and use of customer voting sys-

tems, identifying the appropriate system to be employed in di�erent settings, and provide realistic

estimates of their e�ectiveness when used for typical products.

6
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2. Literature Review

Our work is related to three streams in the operations literature: information acquisition in

supply chains, tournaments and crowdsourcing, and strategic customers.

Information Acquisition in Supply Chains: Designing mechanisms that enable information �ow

within members of a supply chain has been widely studied, typically concerning the sharing of

demand forecast information (see Oh and Özer (2012) for recent advances and the references therein

for an extensive summary of the literature). While this work largely considers the intended sharing

of information, another stream has examined the unintended sharing or leakage of information. Li

(2002) and Li and Zhang (2008) study the retailer incentives and information leakage in a two-tier

supply chain. More recently, Ha et al. (2011) consider information sharing in competing supply

chains. Anand and Goyal (2009) examine the leakage of information through material �ows in the

supply chain. Finally, while most of this work has taken an analytical game-theoretic approach to

studying information sharing, Özer et al. (2011) conduct laboratory experiments to examine the

relationship between trust and information sharing. In contrast to this literature, which studies

information �ows within di�erent tiers of a supply chain, this study examines information �ows

between the supply chain and its strategically acting customers. In a similar vein, Huang and

Van Mieghem (2012) study how tracking customer online clicks may provide information to an online

seller. However, while they study indirect monitoring systems (click-tracking) and their main focus

is on situations where the objective of the �rm is to reduce quantitative demand uncertainty on an

existing product to improve inventory decisions, we consider active systems in which customers are

presented with incentive rules (such as purchasing discounts) in situations where the objective of the

�rm is to reduce uncertainty around customer valuation for a new product to improve development

and pricing decisions.

Tournaments and Crowdsourcing: Engaging customers or other external parties in �rm decisions

has been studied extensively in the crowdsourcing and tournaments literature. Among the early

works, Ehrenberg and Bognanno (1988) �nd that the level and structure of prizes in tournaments

have a signi�cant impact on participants' performance. More recently, Terwiesch and Xu (2008)

provide recommendations on the rules to be employed in a contest depending on the type of prob-

lem at hand. Boudreau et al. (2011) provide empirical evidence that the number of contestants is

important to determine the quality of the best solution. Like this body of research, we examine

7



www.manaraa.com

crowdsourcing; however, while the above studies examine incentives when external parties are en-

gaged in innovation or problem solving, this study is focused on incentives in information elicitation

when a �rm deals with its customers. The only study about customer voting systems that we are

aware of is Caldentey and Araman (2013), but their study has a very di�erent focus from ours, that

is, they determine the optimal duration of the voting phase for the �rm, accounting for the trade

o� between better information and earlier product launch.

Strategic Customers: In recent years there has been strong interest in examining the implications

of dealing with forward-looking customers that strategically time their purchases, thus harming

�rm pro�ts. Cachon and Swinney (2009) study the value of quick response and enhanced design

strategies in the presence of strategic customers. Su and Zhang (2008) study a two-tier supply

chain selling to strategic customers and identify the bene�ts of decentralization. Su and Zhang

(2009) show how quantity commitment and availability guarantees can mitigate the negative e�ects

of strategic customer behavior when a newsvendor sells to strategic customers. Parlaktürk (2012)

studies the value of variety when selling to strategic customers. Boyac� and Özer (2010) analyze

advance selling in the presence of risk and loss-averse strategic customers. Li and Zhang (2012)

consider pre-ordering and show that using pre-order information to improve availability hurts the

�rm by reducing its ability to price-discriminate. Like these papers, our study models forward-

looking customers. While all these studies consider strategic behavior in the timing of the purchase,

this study focuses on the customer's strategic voting decision, which must account for di�erent

incentive systems put in place by an information-seeking seller.

Our work is also related to the political economics literature on social choice theory (for a current

survey see Gaertner (2009), and see Condorcet (1785), Arrow (1963) for foundations). Like our

work, this literature considers the design of voting systems, but it departs in the design objective.

While political voting systems are designed to elicit relative preferences in order to maximize social

welfare, customer voting systems are designed by �rms to elicit information from customers about

their valuation for a product in order to improve business decisions and maximize pro�t.

To summarize, we extend the information sharing in supply chains literature by considering

active sharing between the �rm and customers. We consider a new dimension of customer strategic

behavior, when customers vote strategically for products. Finally, our work considers a new form

of crowdsourcing, that of crowdsourcing operational �rm decisions.

8
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3. Customer Voting Systems to advise on Development decisions

In this section, we consider the use of customer voting systems to advise on product development

decisions. In the next section, we consider use of these systems to advise on pricing.

3.1. Preliminaries. Consider a �rm with an innovative product design. Bringing this product

to market requires making additional investments of cF monetary units, representing the cost of

�nalizing the design, booking supplier capacity, establishing production capabilities, etc. If these

development costs are incurred, the �rm sells the product to a market of homogenous strategic

customers whose valuation for the product, X, is a continuous random variable with convex support

S, di�erentiable pdf f , cdf F , and survival function F̄ = 1 − F . While customers observe their

valuation, the �rm only knows its prior distribution. We assume that each customer purchases at

most one unit of the product, and that the ensuing demand is ful�lled at a unit variable cost c,

which includes both production and delivery costs. Without loss of generality, we normalize the

mass of customers in the market to one.

In the absence of any voting mechanism, the �rm makes its development decision to maximize

expected pro�t, computed using the common prior distribution on product valuation, f . The

optimal price to sell the developed product P ∗N is the root of F̄ (P ∗N )− f (P ∗N ) (P ∗N − c) = 0.4 If the

maximum expected pro�t is negative, the �rm does not develop the product; otherwise, the �rm

develops the product and its expected pro�t is

(3.1) Π∗N =

ˆ ∞
P ∗N

(P ∗N − c) dF − cF ,

where the subscript N is used to identify the metrics for a no-voting business model.

4To ensure a unique solution, we require the pro�t function to be quasi-concave in price, i.e. ∃!P ∗N : F̄ (P ∗N ) −
f (P ∗N ) (P ∗N − c) = 0, and −2f (P ∗N )− f ′ (P ∗N ) (P ∗N − c) < 0. This holds, for example, for valuation distributions with
a non-decreasing hazard rate (such as uniform and exponential) and for the normal distribution.

POST-VOTE DECISION

The firm decides if it will
develop the product

SALES

Customers decide to
purchase the product,
voters get a discount

VOTING

Customers decide to vote
for the product or not

PRE-VOTE ANNOUNCEMENT

The firm announces the
price, PD , and the purchasing
discount, δD

Product valua!on x is
observed by customers

Figure 3.1: Customer Voting System to advise on Development Decisions

9



www.manaraa.com

3.2. Customer Voting Systems with Purchasing Discount. We now consider the use of a

customer voting system with purchasing discount at the above described �rm. In such a system,

the �rm puts up a product design for voting and decides to develop the product only after observing

the outcome of the poll. The sequence of actions is illustrated in Figure 3.1. First, the product

valuation is drawn and the realized valuation x is observed by customers.5 Next, the �rm announces

a price PD, a purchasing discount δD ≤ 1 (more on this later), and shares the product characteristics

(typically pictures and speci�cations) with its customers. Each customer then chooses whether or

not to vote for the product. Casting a vote involves customer e�ort (for example, veri�cation of

identity, email con�rmation of vote, using up the limited number of votes, etc.) captured through

a cost of casting a vote, cv > 0.6 Next, the �rm uses the observed outcome of the poll to decide

whether to incur the development cost cF . If the product is developed, it is available for sale:

customers who previously voted for the product can purchase it at the discounted price δDPD,

while customers who did not vote for it must pay the full price PD. Essentially, customers who

vote for the product earn the right to purchase it at a discounted price. The subscript D is used to

identify metrics associated with this voting system used to advise on development decisions.

The above sequence of actions constitutes a game of incomplete information with in�nitely many

players. We search for equilibria where each player's strategies yield a Bayesian Nash Equilibrium

in every continuation game given the posterior beliefs of the players, beliefs that are updated in

accordance with Bayes' law (Fudenberg and Tirole (1991), page 321). As is typical in the analysis of

such games, it is convenient to describe the optimal strategies of each player in reverse chronological

order. For any price PD and discount δD, the buying strategy for any customer is to buy the product

i� she makes a positive surplus from the trade, that is, i� x − δDPD ≥ 0 for customers that voted

for the product, or i� x−PD ≥ 0 for customers that did not vote for the product. This is preceded

by the �rm's development decision, where based on the voting outcome, that is the fraction of

customers, νo, that cast a vote in favor of the product, the �rm updates its prior information f

on customer valuation for the product to the posterior information fνo . The �rm then develops

5Voting systems are typically used for new products, where the principal source of uncertainty for the �rm is whether
the product is met favorably by the market as a whole, and idiosyncratic di�erences within the market, i.e. between
individual customers, are a secondary concern. Considering customers with homogenous yet uncertain valuations for
the product allows us to focus on the �rst type of uncertainty, i.e. on the aggregate market uncertainty faced by the
�rm, which is the more relevant to our context. We refer the reader to ?? for a discussion on potential extensions to
the model.
6See Hann and Terwiesch (2003) for estimates on the costs of online customer actions.
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the product i�, accounting for such updated information, the expected pro�t-to-go πν0
D (δD, PD) is

positive. In order to characterize fνo and π
ν0
D (δD, PD), we examine the voting step.

We model voting as a simultaneous-move (sub)game among customers. This simultaneous-move

voting subgame belongs to a class of games known as coordination games, �rst de�ned by Schelling

(1960). As is typical in the analysis of such games, we use Harsanyi and Selten's well-known

concept of payo� dominance (Harsanyi and Selten (1988), p.81) to identify the equilibrium that

arises in the voting step subgame. In our context, this implies that the equilibrium characterized

by the voting threshold that maximizes customer surplus will arise. The decision of customer

i, after observing the �rm's choice of δD and PD and the realized valuation x, can generally be

described as casting a vote i� her valuation belongs to a set V i
D. Her voting strategy is then de�ned

by the set function V i
D (δD, PD), and it must be the best response to other customers' voting

strategies V −iD (δD, PD), taking into account the �rm's development strategy and the customer's

buying strategy outlined above. We show that in equilibrium all customers vote according to the

same voting strategy, and that such an equilibrium strategy is of a threshold type where customers

cast a vote i� x ≥ x̄∗D (δD, PD) (Lemma 5, Appendix A). Casting a vote is an inconvenience for

customers, but they may be willing to overcome such inconvenience and vote if they value the

product highly enough, due to the bene�t of earning a purchasing discount.

At the beginning of the game, anticipating how customer voting strategy x̄∗D (δD, PD) responds

to its decisions, the �rm announces a price P ∗D and a discount δ∗D that maximize the weighted sum

of the pro�ts-to-go for each of the possible voting outcomes, with πν0
D (δD, PD) =

(
δνoD PD − c

)
·

F̄vo
(
δνoD PD

)
− cF being the �rm pro�t-to-go once the voting outcome νo is observed, F̄vo is the

survival function of the posterior information obtained using Bayes rule, and where δνoD = 1 −

(1− δD) νo. If the voting system does not elicit any information, it is no better than a business

model without voting. Thus, we require the �rm to choose an initial announcement (δD, PD) such

that an informative equilibrium exists, that is, where F (x̄∗D (δD, PD)) ∈ (0, 1), so that di�erent

voting outcomes may arise. The next Lemma describes the equilibrium outcome when a voting

system is deployed to advise on development decisions. We assume that at least in the best-case

scenario, the trade surplus will be enough to compensate for total costs, i.e. sup (S)>cF + c + cv,

to avoid the trivial case where it is always better not to develop the product.

Lemma 1. In voting systems with purchasing discount, there exist informative equilibria only if

δD < 1. All such informative equilibria have the same pro�t, and are characterized by a price P ∗D,
11
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a discount δ∗D, and a customer voting strategy x̄∗D such that

(3.2) δ∗DP
∗
D =

1− F (δ∗DP
∗
D + cv)

f
(
δ∗DP

∗
D + cv

) + c+ cF δ∗D ≤ 1− cv
P ∗D

x̄∗D = δ∗DP
∗
D + cv.

The �rm develops the product i� νo = 1.

The above Lemma demonstrates that appropriately designed voting systems with purchasing dis-

count are an e�ective information-elicitation mechanism. For voting to elicit customer information,

it is necessary that customers vote only under certain states of the world. This requires a �ne

balance between the costs and bene�ts of voting, a balance that tilts di�erently in di�erent states

of the world. Two conditions ensure this: �rst, voting must come at a cost to customers, if this is

not the case, customers would always vote. However, this implies that no customer would incur the

cost of voting unless there is some bene�t to compensate for it, which leads to the second condition�

voting should bring su�cient bene�t to customers in some states of the world. By o�ering a high

enough discount on the potential purchase of a product, the �rm can induce customers to vote for

it when they value the product su�ciently highly. In the process, the �rm can interpret the voting

outcome to acquire improved information on their valuation. Formally, for a su�ciently lucrative

discount, δ∗D ≤ 1 − cv
P ∗D

, customers only vote when they value the product highly, x ≥ δ∗DP
∗
D + cv.

This allows the �rm to update its prior information on customer valuation for the product and

eliminate instances where the �rm invests in developing a product that is not valued su�ciently by

customers.

From a managerial point of view, the result highlights two things. First, that voting systems with

purchasing discount may e�ectively acquire customer information. Second, that only systems that

o�er discounts to voters provide economic incentives for customers to share information. On the

contrary, voting systems like the one used at Threadless, which o�ers no reward to voters and merely

relies on social incentives, may not supply accurate, interpretable information to the �rm, given the

notorious complexity of social interactions and the �rm's limited control on them. Information from

such systems should therefore be used with caution.

While voting systems allow a �rm to acquire information and potentially increase pro�ts, setting

the price and discount so as to elicit information from customers can potentially decrease pro�ts.

The next section characterizes this tradeo� and identi�es settings where such voting systems are

most useful.
12
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3.3. Advantage of Voting Systems with Purchasing Discount.

Theorem 1.

1) Voting systems with purchasing discount outperform no-voting business models i� the cost of

development is higher than a threshold development cost ĉF , de�ned by

ĉF =
F̄ (P ∗N ) (PN − c)− F̄ (δ∗DP

∗
D + cv) (δ∗DP

∗
D − c)

F
(
δ∗DP

∗
D + cv

) ,

where δ∗D and P ∗D are de�ned in Equation 3.2 and P ∗N in Section 3.1. This threshold increases in

the cost of voting cv and decreases in the unit cost c.

2) When the �rm's uncertainty around customer valuation for the product X increases, the ben-

e�t of voting systems, Π∗D − Π∗N , can increase or decrease. When X is distributed uniformly over

[b− a, b+ a], an increase in customer valuation uncertainty, a, decreases the bene�t of voting sys-

tems i� b < c+ cv+cF
2 .

The condition in the �rst part of Theorem 1 characterizes the circumstances where a voting

system outperforms a no-voting business model. This condition can be understood by noting that

a voting system di�ers from a no-voting business model in two principal ways. On the one hand, a

voting system allows the �rm to halt the development of a product when the voting outcome reveals

that customers do not like the product enough. This positive e�ect, called loss avoidance, allows

the �rm to avoid developing unpro�table products, and it increases in the development cost, cF .

On the other hand, in order to obtain information, voting systems require customers to incur an

e�ort cost to signal their high interest for the product, a cost to customers that does not translate

into revenues for the �rm, a system ine�ciency. Such voting e�ort e�ect is negative and becomes

more prominent as the cost of voting cv increases. From these two e�ects follows the existence of

the development cost threshold ĉF above which a voting system is a better choice than a no-voting

business model. It also follows that this threshold increases in cv.

Formally, the bene�t of a voting system, Π∗D −Π∗N , can be expressed as the sum of the two main

e�ects, voting e�ort and loss avoidance, respectively equal to−(F (P ∗N + cv)−F (P ∗N ))(P ∗N−c) and

cFF (P ∗N+cv), plus a third indirect e�ect, which captures the di�erent prices charged in the two

systems on account of the two main e�ects.7 The ability of a voting system to avoid losses and the

ine�ciency that arises from the voting e�ort also change the �rm's optimal pricing decision.

7This component of the pro�t di�erence is cF [F (δ∗DP
∗
D + cv)− F (P ∗N + cv)] + F̄ (δ∗DP

∗
D + cv) (δ∗DP

∗
D − c) −

F̄ (P ∗N + cv) (P ∗N − c).
13
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Interestingly, the threshold ĉF decreases in the unit cost c, meaning that a higher unit cost always

increases the advantage of voting systems. This is because a voting system has lower expected sales

compared to a no-voting business model (Lemma 6, Appendix A). Both the loss avoidance and the

voting e�ort e�ects reduce sales, the former because it makes the �rm better o� charging higher

prices, as it commercializes the product only when it is highly valued by customers, and the latter

because it shifts the demand curve downward on account of the costs of voting. With lower sales, the

negative impact of an increase in unit costs is reduced, making voting systems a more advantageous

choice.

The second part of Theorem 1 highlights the interesting (and surprising) role of uncertainty.

One expects that higher uncertainty around customer valuation for the product makes information

about it more valuable, and consequently the advantages of information-acquiring voting systems

should increase with valuation uncertainty. Our analysis shows that this is not always the case

when the primary use of information is stopping development in low-valuation states. A mean-

preserving increase in the uncertainty around customer valuation for the product implies a fatter

right-tail of the valuation distribution. For high-cost products that are pro�table only for right-tail

valuations, this implies a lower chance of unpro�table states of the world where the voting system's

loss avoidance is helpful, thus reducing the bene�t of voting systems. Further, this increased tail

mass can contribute less to pro�ts for voting systems when the voting system margin is lower.

When product valuation is distributed uniformly in the interval [b− a, b+ a], the simple condition

b < c+ cv+cF
2 characterizes all situations where an increase in market uncertainty reduces the bene�t

of a voting system. Essentially, when the costs associated with the product (voting, development,

and unit cost) are high, a higher uncertainty in customer valuation may operate in the opposite

direction of what intuition suggests, thus reducing the bene�t of acquiring information through

voting systems.

Taken together, our analysis suggests that voting systems with purchasing discount are a helpful

innovation to existing business models that can improve �rm pro�ts. In particular, voting systems

engage customers in �rm operations, solicit their inputs on decisions and use these inputs to im-

prove pro�ts. The bene�ts are most salient for �rms/products when the production, shipment and

development costs are high. Section 5 uses real data to provide numerical estimates of these gains.

We next consider a voting system that works along the same lines as the ones described in this

section, but where the information acquired through voting is used to set prices.

14
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SALES

Customers decide to
purchase the product,
voters get a discount

VOTING

Customers decide to vote
for the product or not

POST-VOTE DECISION

The firm decides the
price, PP

PRE-VOTE ANNOUNCEMENT

The firm decides if it will
develop the product and
announces the purchasing
discount, δP

Product valua"on x is
observed by customers

Figure 3.2: Customer Voting System to advise on Pricing Decisions

4. Customer Voting Systems to advise on Pricing decisions

4.1. Customer Voting Systems with Purchasing Discount. This system follows along the

same lines as the voting system to advise on development decisions, except that the decisions of the

�rm in the pre-vote announcement step and the post-vote decision step are exchanged (Figure 3.2).

As before, �rst the product valuation x is drawn. In the pre-vote step, the �rm decides whether

to develop the product: if it doesn't, the game ends and it earns zero pro�t, otherwise it incurs a

development cost cF and then announces a discount δP for customers that will vote in favor of the

product. In the voting step that follows, after observing the magnitude of the purchasing discount

o�ered by the �rm, each customer chooses whether or not to vote in favor of the product. The �rm

observes the voting outcome νo, updates its prior information f to fνo , and chooses the price of the

product. Finally, customers buy the product� at the reduced price δPPP if they previously voted

for it, or at the full price PP otherwise.

As before, customers' strategy in the purchasing step is to buy the product i� they make a

positive surplus. In the post-vote decision step, the �rm pricing strategy P νoP (δP ) maximizes the

expected pro�t-to-go taking into account the discount δP announced at the beginning of the game,

and bases its decision on the new information fνo acquired by observing the voting outcome νo. The

optimal pricing strategy for the �rm is then P νoP (δP ) = argmax
PP

((
δνoP PP − c

)
· F̄νo

(
δνoP PP

))
, where

δνoP = 1− (1− δP ) νo. Customer voting strategy x̄∗P (δP ) is the one that maximizes customer surplus

for every announced discount δP , taking into account the �rm pricing strategy. The �rm optimal

strategy during the pre-vote step is to choose the discount δP that maximizes the weighted sum of

the pro�ts-to-go, these being πνoP (δP ) =
(
δνoP P

νo
P (δP )− c

)
· F̄νo

(
δνoP P

νo
P (δP )

)
, where the notation is

the same as in Section 3. The �rm develops the product i� the expected pro�t above is less than

the development cost cF .
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Theorem 2. There exist no informative equilibria when customer voting systems with purchasing

discount are used to advise on pricing decisions.

Theorem 2 shows that o�ering customers a purchasing discount does not help the �rm acquire

information to advise on pricing decisions. This result is in contrast with our previous analysis,

where the same voting system was shown to be e�ective in acquiring information to advise on

development decisions. Note that in both these systems the inconvenience of voting, together with

the fact that a purchasing discount is most valuable when valuation is high, imply that informative

voting may happen only in the high-valuation contingency. However, the incentives of strategic

customers to share information in the high valuation contingency depart drastically depending on

the intended use of the acquired information.

In a system to advise on development decisions, in the high-valuation contingency customers want

the product to be developed so that they can make a positive surplus by purchasing it. If the �rm

�nds out about customers' high valuation for the product, it also wants to develop the product, as

it is going to be pro�table. The customers are better o� voting in the high valuation contingency

because the �rm's self-interested response to their signal is also in their interest, and this drives the

e�ective use of voting systems with purchasing discount. This is not the case with pricing decisions.

When the product is valued highly, customers would like the product to be priced as low as possible

so that they can obtain a higher surplus from purchasing it. But once the �rm �nds out about the

customers' high valuation, it prefers to charge a higher price, as customers value the product more.

Furthermore, the �rm's pricing decision will not compensate customers for having incurred the cost

of voting, this being a sunk cost by the time the pricing decision is taken. Thus, when pricing

is postponed, customers do not want to share their information because the �rm's self-interested

response to their signal is counter to their interest.

The above result highlights the importance of considering the intended use of the information

in designing voting systems that acquire information from strategic customers. While purchasing

discounts are appropriate for advising on development decisions, they are ine�ective for advising

on pricing decisions. Further, this result is in contrast with the main message of the literature on

postponement (see for example Aviv and Federgruen (2001), Biller et al. (2006), and Van Mieghem

and Dada (1999)), i.e. that ceteris paribus, postponing price or quantity decisions always helps the

pro�ts of a monopolist �rm. In our work, information is not available as a result of an exogenous

process, but is actually acquired by incentivizing customers to share information. This di�erence is a
16
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game-changer: whenever information sharing is an endogenous process, and as such it is conditional

on the incentives of the parties being aligned, there is value in postponement only insofar as the

decisions being postponed do not subvert the preexisting alignment of interests between the parties.

This ine�cacy of voting systems with purchasing discount does not change when the �rm uses the

acquired information to advise on both development and pricing decisions. In principle, one would

expect such a system to perform even better than the previously studied voting system to solely

advise on development decisions� the acquired information can be used to advise on two decisions

rather than just one. However, as before, the con�ict of incentives generated by using information

to improve the postponed pricing decision makes customers unwilling to reveal their high valuation,

making the information exchange impossible.

From a practical point of view, the results of Theorems 1 and 2 suggest that internet retailers

can use voting systems with purchasing discount only when it comes to advising decisions where

the interests of the �rm and customers in the voting states of the world are aligned. This implies

that the use of voting systems to advise on pricing decisions is misguided and likely to lead �rms to

interpret irrational information, consequently choosing sub-optimal prices. Nevertheless, in many

product categories, arriving at the right price for the product is an important strategic objective

and there is increasing demand for the design of voting systems that can help advise on pricing

decisions. We next exploit our above analysis of strategic customer behavior in voting systems to

propose two novel system designs that can be used to advise on pricing decisions, as well as on other

decision variables where the incentives of the customers and the �rm may not be aligned.

4.2. Alternate Voting Systems to advise on Pricing decisions. In our �rst alternate voting

system, the �rm commits to restricting the use of information obtained. In the second system, the

�rm reverses voter incentives by replacing purchasing discounts with penalties, inducing customers

to vote against the product, rather than in favor of it. We search for equilibria in threshold voting

strategies.

4.2.1. Voting Systems with Bounded Pricing. The sequence of actions in this system (illustrated in

Figure 4.1) is the same as that in the above voting system to advise on pricing decisions, except

for one key di�erence: the �rm's pre-vote announcement now includes, in addition to a purchasing

discount δB, a binding commitment to a maximum price P̄B for the product. Hence, the �rm must

now choose both the discount and the upper bound on price before voting takes place, its optimal
17
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PRE-VOTE ANNOUNCEMENT

The firms announces the 
purchasing discount, 
and the maximum price,

VOTING

Customers decide to vote 
for the product or not

POST-VOTE DECISION

The firm decides the 
price, , subject to its 
ini!al price commitment

SALES

Customers decide to 
purchase the product, 
voters get a discount

Product valua!on x is
observed by customers

Figure 4.1: Customer Voting System with Bounded Pricing

announcement
(
δ∗B, P̄

∗
B

)
being the one that maximizes

∑
νo
Pr {νo|x̄∗B}·

(
δνoB P

νo∗
B − c

)
·F̄νo

(
δνoB P

νo∗
B

)
,

where x̄∗B is customer equilibrium voting strategy, P νo∗B = arg max
P νoB ≤P̄B

(
δνoB P

νo
B − c

)
· F̄νo

(
δνoB P

νo
B

)
are

the subgame-perfect pricing functions, notation for δνoB and F̄νo is as before, and where we naturally

focus on information-eliciting announcements of the �rm. Note that by setting
(
δB, P̄B

)
the �rm

a�ects the future pricing strategy both directly through the upper bound P̄ ∗B, and indirectly through

customer voting strategy x̄∗B, which is a function of the announcement.

As before, in this and in the next voting system that we analyze, we characterize the equilibria

where each player's strategies yield a Bayesian Nash Equilibrium in every continuation game given

the posterior beliefs of the players, beliefs that are updated in accordance with Bayes' Law, and we

use payo� dominance (Harsanyi and Selten (1988), p.81) to identify the equilibrium that arises in

the voting step subgame. The equilibrium strategies for this system are provided in Appendix A

(page 109). Henceforth, we focus on the interesting case where cF is low enough for the �rm to

be better o� developing the product: if not, the product is not developed in the �rst place, hence

the �rm does not seek to obtain information from customers and the resulting pro�t is zero.8 The

ensuing equilibrium outcome in a voting system with bounded pricing departs from the one with

purchasing discount alone, most interestingly in how information is shared.

Theorem 3. In a voting system with bounded pricing there always exists an informative equilibrium,

i.e. where F (x̄∗B) ∈ (0, 1).

Committing to a maximum price allows the �rm to acquire information. As before, when a pur-

chasing discount is o�ered, customers vote only when the valuation for the product is high enough.

But now, unlike before, the �rm can commit to not increasing its price to a level where customers

would be left with a negative surplus in the high-valuation contingency. This creates incentives

for strategic customers to vote and share their private information to extract some surplus. While

8Formally, we consider cF < F̄ (x̄∗B)
(
δ∗BP

1∗
B − c

)
+

[
F (x̄∗B)− F

(
P 0∗
B

)] (
P 0∗
B − c

)
.
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SALES

Customers  decide  to 
purchase  the  product, 
voters are charged 

VOTING

Customers decide to vote
for the product or not;
voters receive reward r

POST-VOTE DECISION

The firm decides the
price, PPP , subject to its
ini"al price commitment

PRE-VOTE ANNOUNCEMENT

The firm announces the
voter’s reward, r , and the
purchasing penalty

Product valua"on x is
observed by customers

Figure 4.2: System with Reverse Voting

committing to a maximum price allows the �rm to obtain information, the very same commitment

restricts the �rm's ability to fully use the information. The next system we propose achieves both

objectives� the �rm is able to acquire customer information while retaining the �exibility to use the

information in the way it sees �t.

4.2.2. Systems with Reverse Voting. Inspired by the study of reverse voting systems in political

settings,9 we consider a system that �ips the incentives of voters using voter rewards and purchaser

penalties. With this mechanism (Figure 4.2), the �rm announces that all customers that cast a

vote will receive an immediate lump-sum reward r > 0 in the form of a micro-payment or a coupon.

However, if these customers decide to later purchase the product they may be charged a higher

price, a purchasing penalty ρvo ≥ 1∀vo is applied to them. Essentially, voters earn an immediate

reward but may also be subject to a price penalty if they buy the product. At this point, each

customer decides whether or not to vote. Then, the �rm observes the voting outcome νo and uses

the updated information fνo to decide what price PR to charge for the product. Finally, customers

are allowed to buy it� at an augmented price PR · ρvo for voters, and at a regular price PR for

non-voters.

Customers' purchasing strategy is to buy i� their valuation is higher than the price they are

charged. The pricing decision of the �rm is the solution to P νo∗R = arg maxPR (PR · ρvo − c) ·

F̄νo (PR · ρvo) with the usual notation for F̄νo . In the voting step, customers vote i� their valuation

is below a given threshold valuation x̄R. Note that this customer voting strategy is the reversal of

that in the other voting systems: customers vote i� their valuation is below a given threshold, rather

than above. In fact, when the valuation for the product is high, customers prefer to buy it, and

since voting for the product in this state leads to an increase in price on account of the purchasing

penalty, they prefer not to vote. On the other hand, when the valuation is low, customers are

9Reverse voting systems were originally developed in social choice theory in the economics literature, with the earliest
use in Athenian democracy (Hansen (1999)). In modern times, the EU is considering the use of such systems.
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unlikely to buy the product, and voting for the product earns them the immediate reward with no

other relevant consequences. Hence, in this system customers can be interpreted as voting against

the product, since casting a vote signals a low valuation.

Before the voting step, the optimal announcement (r, ρvo) maximizes the weighted sum of the

pro�ts-to-go, minus the expected cost of rewards
∑

νo
Pr {νo|x̄∗R}·

(
ρP νo∗R − c

)
·F̄νo

(
ρP νo∗R

)
−rF (x̄∗R).

As before, we study the interesting case when developing the product is pro�table.10 Equilibrium

strategies are provided in Appendix A (Page 110).

Theorem 4. In a voting system with reverse voting there always exists an informative equilibrium,

i.e. where F (x̄∗R) ∈ (0, 1).

Systems with reverse voting can acquire information where traditional systems with purchasing

discounts could not. To understand this drastic reversal, it is instructive to examine the incentive

proposition for voters in both systems. In voting systems with purchasing discount, customers are

asked to incur a costly action (voting) in order to signal a high valuation, but the �rm's ex-post

optimal response after such a signal (to charge a higher price) is against the customers' interest.

Thus, there are no incentives to incur the cost of sending this signal. On the contrary, with reverse

voting, customers are asked to incur a costly action (voting) in order to signal a low valuation,

and the �rm's response after such a signal (to reward customers and choose a lower price) is in the

senders' interest, thus incentivizing them to incur the costs necessary to send the signal and share

their information. Note that unlike the voting system with bounded pricing, with reverse voting the

�rm can freely make the price decision. A priori, this system has the best features of all systems

described so far, in that it has full price �exibility and information sharing.

It should be noted that for reverse voting to be e�ective, voters need to be identi�ed at time of

purchase, so that the purchasing penalty can be applied. Arguably, some customers could try to

game the system by creating multiple accounts, voting with one account (thus earning the reward)

while purchasing the voted product with another account (thus avoiding the penalty). In principle,

this type of behavior constitutes a potential problem for a correct execution of reverse voting. In

practice, however, �rms can drastically reduce such behavior by employing recent web technologies,

such as super-persistent cookies, and by also requiring identifying information to cast a vote, such as

a combination of email, credit card number, and billing and shipping addresses. Note also that for

10Formally, we consider cF < F̄ (x̄∗R)
(
P 0∗
R − c

)
+

[
F (x̄∗R)− F

(
P 1∗
R

)] (
P 1∗
R − c

)
− rF (x̄∗R).
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the purchaser penalty to be an e�ective incentive, voters just need to be subject to a price increase

in expectation, and even a small chance to be identi�ed is enough to deter unwanted behavior, due

to the small reward from voting. These considerations suggest that, from a practical standpoint,

multiple accounts constitute a very minor issue for an e�ective implementation of systems with

reverse voting.

4.3. Bounded Pricing or Reverse Voting? In order to compare the two newly developed voting

systems to advise on pricing, it is instructive to reformulate the optimal �rm pro�ts in each system

into a common pro�t form. This assumes a particularly interesting structure when the cost of voting,

cv is relatively small compared to the product valuation, which we assume hereafter.11 This common

pro�t function has two components: the �rst is the informed pro�t, PI, which can be interpreted

as the pro�t that a �rm earns if it acquires information. The second is the cost of information, CI,

which is the cost of incentivizing strategically acting customers to share information.

Formally, the pro�t of voting system j, where j ∈ {B,R}, B denotes the system with bounded

pricing, and R denotes the system with reverse voting, can be decomposed as Π∗j = PIj−CIj where

(4.1) CIB = cvF̄ (x̄∗B) , CIR = cvF (x̄∗R) ,

(4.2) ∀j PIj
(
x̄∗j
)

=
(
x̄∗j − c

)
· F̄
(
x̄∗j
)

+
(
P ∗l
(
x̄∗j
)
− c
)
·
(
F
(
x̄∗j
)
− F

(
P ∗l
(
x̄∗j
)))
− cF ,

and P ∗l (x̄j) = argmax
P

[F (x̄j)− F (P )] (P − c)+ (see Appendix A, page 111 for details on ob-

taining the above common reformulation). We next examine how these two components of pro�ts

di�er in the two systems.

Cost of Information (CI). The cost of information (Eq. 4.1) is incurred by the �rm on di�erent parts

of the valuation distribution for the two systems� when valuation is more than the voting threshold

in bounded pricing, and when valuation is less than the voting threshold in reverse voting. In a

system with bounded pricing, the cost of information is the potential margin that the �rm loses

in the high-valuation contingency because of the �rm's commitment to a maximum price. In a

system with reverse voting, on the other hand, CI is the expected value of rewards to voters in the

low -valuation contingency. In both cases, the cost of information increases in the cost of voting.

11Formally, cv ≤ argmax
P

[
F
(
x̄∗j

)
− F (P )

]
(P − c)+, j ∈ {B,R}.
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When low valuations are more likely, reverse voting systems end up paying out too many rewards,

whereas when high valuations are more likely, bounded pricing systems have their margins crippled

by the maximum price commitment. The next theorem formalizes this e�ect.

Theorem 5. Take a valuation distribution f , and let x̄fB and x̄fR be customer equilibrium voting

strategies; then for every valuation distribution g such that g �
fosd

f , the cost of information �rst-

order increases for bounded pricing systems and �rst-order decreases for reverse voting systems,

cvF
(
x̄fR

)
> cvG

(
x̄fR

)
and cvF̄

(
x̄fB

)
< cvḠ

(
x̄fB

)
. Further, if f has a non-decreasing hazard rate,

then a shift in the valuation distribution, h (x) = f (x− k), k > 0, increases the cost of information

for bounded pricing systems, cvF̄
(
x̄fB

)
< cvH̄

(
x̄hB
)
.

Roughly speaking, Theorem 5 shows that moving probability mass from lower to higher valuations

(from f to g) favors reverse voting systems. Managerially, this suggests that reverse voting systems

work best when the valuation distribution has a higher mean and/or is right-skewed. Next, we

consider the second component of pro�ts, the informed pro�t.

Informed Pro�t (PI). Interestingly, the informed pro�t (Eq. 4.2) is the same function of the voting

threshold, x̄∗j , in the two systems. This voting threshold determines the information that the

�rm can obtain from voting, and consequently also determines the informed pro�t. In particular,

some voting thresholds get more useful information than others (as an extreme case, thresholds

at the boundaries of the distribution's support bring no information or increase in pro�ts). Now,

in bounded pricing systems the �rm can freely choose this threshold (by appropriately setting the

discount and price bound, δB and P̄B, see Appendix A, page 111), whereas in reverse voting systems

the �rm has no control of the same, which is determined by the payo�-dominant equilibrium. This

control over the customer voting threshold and consequently of the quality of information gives an

advantage to the bounded pricing system. In particular, it can always, at the very least, acquire the

same information as with reverse voting, with the potential of doing better. Formally, the thresholds

are:

(4.3) x̄∗B = argmax
x̄B

(ΠB (x̄B)) ,

(4.4) x̄∗R = argmax
x̄R

[
F̄ (x̄R) (x−P ∗h (x̄R))+[F (x̄R)−F (P ∗l (x̄R))] (x−P ∗l (x̄R))+cvF (x̄R)

]
,
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Figure 4.3: Comparison of Voting Systems to advise on Pricing Decisions

where P ∗h (x̄R) = argmax
P

min
(
F̄ (P )
F̄ (x̄R)

, 1
)

(P − c), and the next theorem captures the informa-

tional advantage of bounded pricing.

Theorem 6. There always exist a purchasing discount and a maximum price in the bounded pricing

system such that its informed pro�t is at least as high as that of the system with reverse voting.

Further, lim
cv→0

PIB − PIR ≥ 0 and lim
cv→0

Π∗B −Π∗R ≥ 0.

The above result shows that the system of incentives set up with bounded pricing not only helps

the �rm acquire information, but it also allows the �rm to acquire the right kind of information.

If the cost of voting is low, thereby muting the cost of information component of pro�t, the higher

informed pro�t in bounded pricing makes it a better system.

Taken together, our results show that the informed pro�t component always favors bounded pric-

ing, whereas the cost of information component favors bounded pricing or reverse voting depending

on the skewness of the distribution. Managerially, we expect that bounded pricing is preferred when

the cost of voting is low, whereas reverse voting is preferred when the mean valuation is high and/or

the distribution is right skewed.

Figure 4.3 illustrates these e�ects.12 Panel (a) shows that a reverse voting system is preferred

with right-skewed valuation distributions, in particular when the cost of voting is substantial. Panel

(b) illustrates the consequences of di�erent mean valuations, obtained by shifting the distribution.

Interestingly, a right-shift in distribution can also be interpreted as a decrease in unit cost, c. Hence,

with increasing mean and/or lower unit costs, reverse voting systems are preferred.

12In these examples, customer valuation is beta-distributed, allowing us to change skewness and support by adjusting
the shape parameters α, β, A and B. We change the skewness of the distribution while keeping α+β constant, which
can be thought of as looking at the possible range of priors that a �rm engaging in pre-game market research could
start with, keeping the amount of market investment constant.
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5. Numerical Study

In this section we quantify the bene�ts of voting systems for two representative products from

�rms employing voting systems. We consider designs for two new products� a high-value product,

the "Chester�eld Leather Sofa", and a low-value product, the "Glass Table Lamp� (Figure A.1

in Appendix A). Table 5.1 reports the parameters associated with each product and describes the

methodologies and sources employed to estimate them. Since no data is available about the valuation

distribution for these products, we investigate the pro�tability of voting systems by employing a

range of plausible values for the mean, skewness, and variance of the valuation distribution. We

begin by presenting the results for voting systems to advise on development decisions, and next for

voting systems to advise on pricing decisions.

5.1. Pro�tability Gain for Voting Systems to Advise on Development decisions. Figure 5.1

shows the gain in product-level gross pro�ts when voting is used to advise development. Panels

(1) and (2) consider di�erent levels of mean valuation and Panels (3) and (4) consider the costs of

voting.

Panels (1) and (2) show that the pro�t gain from deploying voting systems is substantial, but

varies dramatically depending on mean customer valuation. When mean valuation is a smaller

multiple of the production costs, or the pro�t potential is smaller, the gains are higher� reaching as

high as 50%. The e�ect is more pronounced for the low value product. Skewness of the valuation

distribution has a substantial impact on pro�t gains, especially for low-value products with low

valuation. Taken together, the gains from deploying voting systems to advise development are most

pronounced when the pro�t potential of the product is smaller, that is, when the costs (production,

shipping and development) are comparable to the customer valuation and the valuation distribution

is left skewed.

Panels (3) and (4) show that a change in the cost of voting cv has almost no impact on pro�t

gains for the high-value product, but it has a substantial and roughly linear impact for the low-value

product, with a $1 increase in cv resulting in as much as a 6% reduction in pro�t gains. Higher

uncertainty in the valuation distribution increases the bene�ts from deploying voting systems. For

the low-value product, a 20% increase (decrease) in variance of the valuation results in a 5-6%

increase (decrease) in pro�t gains, compared to less than 1% for the high-value product.
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Parameter Lamp Sofa Estimation Method/Sources

production cost, cp $39 $600 Based on quotes obtained from alibaba.com

Unit Cost, c
shipping cost, cs $11 $141

Sum of Port-to-Port rates (calculated for

the Los Angeles -Wenzhou route (www.freight-

calculator.com) using quantity per-shipment

estimates) and last-mile rates (B2B pricing es-

timates from DHL). All values veri�ed against

freight rates at retailer MyFab.

Development Cost, cF $7.3 $36.6
Based on minimum order quantity quotes from

alibaba.com. Pro-rated over the expected num-

ber of units sold (sales data from MyFab).

Voting Cost, cv $3.52-6.08 Range of frictional cost estimated in Hann and

Terwiesch (2003)

Table 5.1: Parameter values and Sources
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Figure 5.1: Pro�tability Gains from Voting Systems to Advise on Development
Panels 1 and 2: Cost of voting cv= $4.8 (average estimate from Hann and Terwiesch (2003)).

Valuation, X ∼ Beta with shape parameters (α, β) = (4, 4) in the symmetric case and (3, 5) or

(5, 3) for skewed cases.

Panels 3 and 4: Mean Valuation E [X]= 2*Production cost. Valuation is symmetric, X ∼Beta with
shape parameters (α, β) = (4, 4) as the base case, High/Low variance is ±20% variance.

In all panels: Lower bound of valuation distribution, A, is the production cost of the product in

question.
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Advising on Pricing Decisions
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Figure 5.2: Pro�tability Gains from best Voting System to Advise on Pricing
Panels 1 and 2: Cost of voting cv= $4.8 (average estimate from Hann and Terwiesch (2003)).

Valuation, X ∼ Beta with shape parameters (α, β) = (4, 4) in the symmetric case and (3, 5) or

(5, 3) for skewed cases.

Panels 3 and 4: Mean Valuation E [X]= 2*Production cost. Valuation is symmetric, X ∼ Beta

with shape parameters (α, β) = (4, 4) as the base case, High/Low variance is ±20% variance.

In all panels: Lower bound of valuation distribution, A, is the production cost of the product in

question.

Overall, these numbers show that voting systems can increase product pro�ts substantially, with

the maximum bene�ts arising for products that have costs comparable to customer valuations.

5.2. Pro�tability Gain for Voting Systems to Advise on Pricing decisions. Figure 5.2

illustrates the gains obtainable in product-level gross pro�ts from systems to advise on pricing

decisions, the panels being organized as before.

Panels (1) and (2) show that in contrast to their use for advising development, voting systems

to advise pricing are most bene�cial for products when mean valuation is substantially higher

than the costs involved. For low-value products, gains increase from about 10% to 25% as mean

valuation increases in comparison to costs. For high value products, the gains are stable at around

30%. Skewness in the valuation distribution has some impact on the pro�t gains, with a mildly

left-skewed (right-skewed) distribution resulting in a 3-5% increase (decrease).

Panels (3) and (4) show that a change in the cost of voting a�ects only low-value products, its

e�ect being roughly linear in cv, with a $1 increase in cv resulting in a ∼2% loss. This reduction is
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lower compared to voting systems to advise on development because here the �rm has the ability to

lower the price and sell to customers even in the low contingency, where the other voting systems

would halt development and make no pro�t. Higher uncertainty has a small positive impact on

pro�t gains, with a 20% increase (decrease) in variance resulting in a 1-1.5% increase (decrease).

These results show that voting systems employed to advise pricing can increase �rm pro�ts

substantially: a �rm using them can expect pro�t gains as high as 25-30% with the maximum gains

when products have high pro�t potential, that is, when customers value products substantially

higher than costs.
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6. Discussion

Voting systems are a novel and innovative way of engaging customers in �rm operations while

acquiring important customer preference information. While these customer engagement and infor-

mation acquisition aspects make them prime candidates for many online retailers, our analysis shows

that their successful deployment and e�ective use requires an understanding of the incentives of all

players involved. In particular, our analysis demonstrates that the intended use of acquired infor-

mation completely changes the appropriate system design� while the design of o�ering incentives to

vote for products is an e�ective information acquisition mechanism for incentive-aligned decisions,

new system designs are required when the interests of the parties are misaligned, as in the case of

pricing decisions. In particular, systems with reduced �exibility or systems that engender voting

against products are likely to be most e�ective in allowing the �rm to best match its operational

decisions to the demands of its customers.

In our model we study the use of customers voting systems to advise development or pricing

decisions on a single product. Our model fully extends to situations with multiple products as long

as the decisions to be made on di�erent products are largely independent from one another. This is

true, for example, when products of di�erent categories are put up for voting�as it often happens in

the furniture industry�and also when customers consider buying multiple products�as it is likely the

case for the cheap t-shirts sold at Threadless. On development decisions, for example, the focus is

usually not on selecting the most promising item(s), rather on selecting all items that are promising

enough. Future work could expand our analysis to consider the case of multiple substitute products.

While we present the analysis in the paper in the context of voting systems in online retail settings,

our model of customer voting systems can also be easily adapted to rapidly growing non-pro�t

communal venture funding. Collectively referred to as crowdfunding models, the most prominent

of which is Kickstarter (cf. Pogue (2012)), these models have attracted widespread attention,

including legislative encouragement in the JOBS act of 2012 (HR 3606), and have become a key

part of every entrepreneur's toolkit. Like voting systems, in crowdfunding, customers have a costly

action to signal their interest in a product�they are asked to pledge money for new products under

development. As in voting systems, the decision of the �rm to invest in developing the product is

based on the level of support received by customers. Finally, as in voting systems, customers that

support new products are compensated with a reward, often in form of a discount (or additional

feature/customization) upon purchase of the product. This is equivalent to setting δD = 1− d−s
PD

in
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our model of Section 3, where s is the sum pledged by the customer and d is the discount (or the

value of the additional feature) promised by the �rm.

Insights from our model can therefore also be applied to crowdfunding. Speci�cally, our analysis

suggests that crowdfunding systems are likely to be informative only when customers pledging are

granted some rewards. The bene�ts of voting systems are likely to be most salient for products that

have high development and unit costs. Further, they might not be most e�ective in systems with

high valuation uncertainty. Most importantly, while pledges and purchaser bene�ts are e�ective

in advising product development, we caution against the use of these systems to support product

pricing and venture pro�tability estimations.

While our analysis above uses development as a canonical decision where �rm and customer incen-

tives are aligned, we believe our insights extend to other decisions with similar incentive structures.

For example, building capacity, stocking inventory, and building logistics or after-sales support ca-

pabilities are all decisions where in the case of high demand, both the �rm and customer desire the

same actions. On the other hand, decisions on promotions, bundling, discounting, and retail execu-

tion are all akin to pricing, where in high-valuation states of the world the �rm and customers desire

di�erent actions. The �rst analysis of voting systems provided in this study o�ers key guidelines on

system use; further study, in particular on the behavioral aspects of voters' engagement, holds the

promise of helping �rms fully realize the potential of these innovative business models.
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Part 2. Operational Advantages and Optimal Design of Threshold

Discounting O�ers

We study the use of threshold discounting, the practice of o�ering a discounted price service only if at
least a given number of customers show interest in it. In recent years, �rms like Groupon and others
in the newly created multi-billion-dollar online deals industry have popularized this approach. We
model a capacity-constrained �rm servicing a random-sized population of strategic customers in two
representative time periods, a desirable hot period and a less desirable slow period. A comparison
with the more traditional approaches typically employed in these circumstances (slow period dis-
counting and closure) reveals that threshold discounting boosts the �rm's operational performance
on account of two advantages. First, the contingent discount incentivizes slow period consumption
when the market for the service is large and reduces supply of the service when the market is small,
in e�ect allowing the �rm to respond to the service's unobserved market potential. Second, activa-
tion of the threshold discount signals the market state to strategic customers, supplying them with
additional information on service availability, and inducing them into self-selecting the consumption
period to one that improves the �rm's capacity utilization and pro�t. Unlike in a typical setting
with strategic customers, strategic behavior in our setting helps the �rm, and a higher fraction
of strategic customers in the population increases the �rm's pro�ts. We consider alternate deal
designs, and we �nd that the best designs compromise the service provider's �exibility in order to
provide strategic customers with clear o�er terms. We conclude with a numerical study calibrated
on data from the opera house Teatro Regio in Torino, Italy, where we consider a number of market
and customer behavior scenarios to estimate that threshold discounting improves �rm pro�ts over
traditional approaches by as much as 29% (6.1% on average) and makes the �rm's pro�ts more
resilient to increasing levels of market uncertainty.
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7. Introduction

Firms often operate in environments in which they must serve highly variable demand with

capacity that is �xed in the short term. This setting has particularly acute consequences for service

�rms, as spare capacity in low-demand periods typically cannot be used to serve customers in high-

demand periods. Prominent industries that struggle with this problem include the movie theater

industry ($10.4 Billion of revenues in 2014), the restaurant industry ($709 Billion of revenues in

2014),13 and a wide variety of retail services, such as beauty salons, bowling clubs, museums, opera

houses, etc.

Over the last decade, the rise of online customer engagement technologies has provided service

providers in these industries with new tools to interact with customers, most notably online dis-

counted deals. The most famous online deal website is certainly Groupon: founded in late 2008 and

the �rst of an innovative breed of �rms, it grew by 2,241% in its second year of operation�faster than

celebrated �rms like Amazon or Ebay�and went public in 2011, raising $700 Million to become the

largest IPO by a US Internet company after Google.14 Groupon's growth was fueled by the use of an

innovative discount structure, in which customers could purchase retail services with a substantial

discount, but the discount was valid only if a certain number of customers showed interest in the

o�ering. From here on, we refer to deals where discounts are contingent on a threshold number of

customers as threshold discounting o�ers.

The popularity of threshold discounting o�ers has increased in the last few years together with the

industry around them, becoming an almost essential feature for the hundreds of websites that have

spawned all over the world trying to imitate Groupon's business model.15 Despite the enormous

popularity of threshold discounting, there is little agreement on the bene�ts associated with such

o�ers. Some commentators argue that their advantage lies in �...driving bargains using economies

of scale in local markets...�, others think that the bene�t is �...a combination of network e�ects and

economies of scale...�, and someone goes as far as to say that ...�there is no (...) substance to the idea

that a threshold of buyers has to be reached before a deal is `activated' (...) there's no real bene�t

13Sources: http://goo.gl/EaZt2, http://goo.gl/qZUKX. Data for the United States.
14See �Groupon's IPO biggest by U.S. Web company since Google�, Reuters, November 4, 2011, http://goo.gl/h8VFj,
and �Groupon IPO: Growth Rate Is 2,241%�, The Wall Street Journal, June 2, 2011, http://goo.gl/UFFwK.
15See �Group Buying vs. Social Buying�, Ingenesist, May 24, 2010, http://goo.gl/ewSb, �Getting In With Groupon
and LivingSocial: What You Need to Know About These Fast-Growing Sales Drivers�, National Federation of Inde-
pendent Business, September 2012, http://goo.gl/DpqKl, �Retail Top 100 2012, No. 33: Groupon/LivingSocial/etc.�,
Retail Customer Experience, December 2012, http://goo.gl/nGm3b, and http://startagroupbuy.com/.
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in that...�.16 The few academic articles on the topic have taken a marketing perspective and praised

threshold discounting o�ers for their ability to improve sales and pro�t (see Section 8). Recently, the

debate on the bene�t of threshold discounting schemes has been muddied as Groupon, the pioneer

in their use, has stopped using these o�ers, implicitly reinforcing the position of those who believe

that they deliver no real value. Given that the source of the bene�ts of threshold discounting is

not well understood, it comes as no surprise that there is even more confusion when it comes to

designing these deals�in fact, to the best of our knowledge, no analysis has been undertaken in the

academic literature on the timing of events in threshold discounting o�ers or on their impact on

�rm pro�t.

The objective of this paper is to understand the operational advantages of threshold discounting

o�ers and to provide recommendations on their optimal design. We consider a typical situation in

which threshold discounting is used, i.e., a capacity-constrained �rm o�ers his services to a random-

sized population of strategically-acting customers who prefer to be served on a desirable �hot� time

period over a less desirable �slow� time period (e.g., a theater on Saturday versus Monday evening),

with the degree of preference for the hot period over the slow period varying across the population.

Demand is thus variable but substitutable between two vertically di�erentiated services, the hot-

period service and the slow-period service.

A traditional approach used by �rms in this context is to either close on the slow period, or

price discriminate�i.e., open on the slow period at a discounted price. A comparison with threshold

discounting reveals that threshold discounting outperforms the traditional approaches on account of

two e�ects. First, by setting an activation threshold, threshold discounting endows the �rm with a

built-in, demand-responsive mechanism (which we refer to as responsive duality) that matches di�er-

ent market states with appropriate pricing/closing decisions, resulting in higher capacity utilization

and better �xed costs management. Second, threshold discounting induces a strategic scarcity ef-

fect that increases customers' responsiveness to slow-period discounts by exploiting their strategic

behavior: inducing them into self-selecting their consumption period to one that better serves the

�rm's interests of managing capacity and margins. Notably, the superior performance of threshold

discounting over the traditional approach holds even in the absence of economies of scale or network

consumption e�ects, the only bene�ts of threshold discounting that have been studied.

16See �Groupon: What a Deal�, July 2011, http://goo.gl/I4kNp; Forbes, October 2011, http://goo.gl/doIJ2; Group-
buyingsites.co.uk, December 2011, http://goo.gl/YfjHF.
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The impact of strategic customers on the pro�ts of a �rm employing threshold discounting is

particularly interesting. The literature on strategic customers has largely found that they reduce a

�rm's pro�t because they time their purchases in order to get lower prices, thus reducing margins

for the �rm. In contrast with the literature, we �nd that in our context having more strategic

customers is bene�cial for the �rm, that is, the higher the fraction of strategic customers in the

population, the higher the �rm's pro�t.

We next study various dimensions of the design of threshold discounting schemes. We �rst con-

sider if the �rm should commit upfront to the number of customers required for the deal to be active,

or instead decide on the deal activation only after observing the subscription level. Interestingly, we

�nd that postponing the deal-activation decision to incorporate the market information contained in

the subscription level is harmful to the �rm. We then investigate the best time for the �rm to reveal

whether the threshold has been reached�speci�cally, if this should be before both periods begin or

not�and �nd that early disclosure is the superior design. We also compare time-restricted threshold

discounts with oft used unrestricted discounts, and �nd that time-restricted discounts are superior.

Finally, we show that under certain conditions the preferred committed threshold, early disclosure,

time-restricted design of threshold discounts can be further improved by o�ering targeted discounts

that reduce lost margins while retaining all the operational advantages of these deals.

We conclude with a numerical study calibrated on real data from the opera house Teatro Regio

in Torino, Italy. We consider di�erent market size distributions, customer preference distributions,

and cost structures. In the 300 scenarios examined, we �nd that threshold discounting increases

�rm pro�ts by as much as 29% (average 6.1%) over the pro�t earned with the traditional approach.

Moreover, threshold discounting is more resilient to increasing market uncertainty than traditional

approaches: while higher uncertainty typically lowers �rm pro�ts, it reduces pro�ts to a lesser extent

or even increases pro�ts for threshold discounting.

Our work makes several contributions. This is the �rst study to examine the operational advan-

tages of threshold discounting, a popular phenomenon that has spawned a multi-billion-dollar online

deals industry. We identify two novel operational advantages of these discounts�the contingent na-

ture of the discount that reduces supply-demand mismatches, and the ability of these discounts to

use strategic customer behavior to their advantage. In contrast with the strategic customer behavior

literature in operations, we show that in our setting, strategic customer behavior is bene�cial. Fur-

ther, we provide clear prescriptions about the design and use of threshold discounts�speci�cally, that
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a service provider is always better o� o�ering a committed threshold, early disclosure, time-restricted

threshold discount as opposed to the variety of other designs touted by deal intermediaries and de-

signers, and we show that focused threshold discounts can improve pro�ts even further. Our analysis

cautions potential users of these discounts to the incentive con�icts inherent in the current modes

of o�ering these discounts through intermediaries. We conclude our study with a quanti�cation of

the pro�t increase from o�ering threshold discounts (up to 29%) and we �nd that these bene�ts

are highest in situations characterized by high market uncertainty. Overall, our paper argues that

threshold discounting is an overlooked method for managing capacity that, if used correctly, can

substantially improve a �rm's performance.
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8. Literature Review

Our work is related to three streams of literature: group-buying and quantity discounts, strategic

consumers, and demand manipulation via pricing.

Group-buying and quantity discounts - In the early 2000's, several group buying websites like

Mercata.com, LetsBuyIt.com, and Mobshop.com were founded with the objective of aggregating

the buying power of customers to obtain quantity discounts. Anand and Aron (2003) model these

group buying practices with a �rm o�ering a price-quantity menu to customers, and �nd that group

buying is better than a simple �xed price only when either demand uncertainty satis�es certain

conditions, or economies of scale are coupled with production postponement. In a similar spirit,

Chen et al. (2007) study group buying auctions, where a �rm commits to a price-quantity function

and customers arrive stochastically and bid their reservation price; they �nd that group buying

is better than simple �xed pricing only in the presence of economies of scale, or when the �rm is

risk-seeking. Unlike our paper, the above works do not consider vertically di�erentiated services or

threshold discounting schemes.

More recently, after the surge in popularity of online threshold discounting deals in the service

retail industry, some authors have devoted attention to study this novel phenomenon. Edelman

et al. (2011), using a formal model, study the business proposition of Groupon (while ignoring

threshold discounting o�ers). They highlight two advantages of Groupon-like o�ers: the ability

to use discounted price to attract low valuation customers, and the ability to increase customers'

awareness of the business�in the same vein as an advertising campaign. The use of threshold

discounting is brie�y discussed in Arabshahi (2010), which argues that the existence of an activation

threshold aims to reassure customers about the quality of the service they're buying, possibly

because the discount is granted due to economies of scale and not poor quality. In their study of the

soft tools used by Groupon to improve their business, Byers et al. (2011) suggest that the activation

threshold could be thought of as inducing a word-of-mouth e�ect among customers, which is formally

studied in Jing and Xie (2011), who argue that informed players act as sales representatives with

their friends in an attempt to reach the threshold. More recently, Chen and Zhang (2014) study

threshold discounts and show that, under some conditions, these o�ers are the optimal mechanism

to price discriminate a population containing two types of customers, one of which is of random

size. While similar to ours, none of these papers take an operational perspective on threshold

discounting schemes, consider inter-temporal demand substitution, or provide explanations for why
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major players have discontinued threshold discounting o�ers. While similar to ours, none of these

papers take an operational perspective on threshold discounting schemes, consider inter-temporal

demand substitution, or attempt to address the issue of how to best design threshold discounting

o�ers.

Strategic customers - A few decades ago, Coase (1972) conjectured that a monopolist selling a

durable good would eventually lower its price down to marginal cost when facing in�nitely patient

consumers. Recent years have seen renewed interest in the operational implications of customer

strategic behavior. Most of the work has focused on strategic purchasing delay on the part of

customers when a �rm sells a �nite inventory of a durable good and may change the price over time.

Su (2007) considers customers with di�erent valuations for the product and degrees of patience, and

develops insights on how the interplay of these characteristics a�ects the �rm's pricing policy and

pro�t. Liu and van Ryzin (2008) study how the capacity choice of a �rm can be used to induce a

rationing risk on risk-averse strategic customers and limit their strategic purchasing delay. Cachon

and Swinney (2009) consider a setting in which the �rm cannot commit in advance to prices, and

they study the value of quick response strategies to mitigate the negative e�ect of strategic purchase

delays on the part of customers when there are di�erent classes of customers, while Cachon and

Swinney (2011) explore the interplay of quick response and enhanced design in fast fashion systems.

Aviv and Pazgal (2008) consider both pre-announced and contingent pricing strategies, and they

provide recommendations for when these di�erent approaches should be used if both are viable.

Su and Zhang (2008) study the value of both quantity and price commitment, and show how a

decentralized supply chain can exploit the ine�ciencies of decentralization as a commitment device

to indirectly implement price and quantity commitment strategies, even when commitments are

not credible. Strategic customers have also been studied in other situations, including consumer

stockpiling in Su (2010), opaque selling strategies in Jerath et al. (2010), conspicuous consumption in

Tereya§o§lu and Veeraraghavan (2012), product variety in Parlaktürk (2012), online click-tracking

in Huang and Van Mieghem (2012), pre-orders in Li and Zhang (2013), social comparisons in Roels

and Su (2013), early buyer reviews in Papanastasiou et al. (2013), and the informative power of

queue length in Veeraraghavan and Debo (2009, 2011) (see Netessine and Tang (2009) for more

references).

Like many of the above papers, our customers time their purchases accounting for the strategic

behavior of other players. Unlike the above papers, however, we explore the consequences of such
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strategic behavior in a novel setting, a �rm that employs threshold discounting o�ers in the context

of vertically di�erentiated service periods. The implications of strategic behavior in our context are

unexpected and in contrast with the main �ndings from this large literature.

Demand manipulation via pricing - This body of literature deals with situations in which a

capacity-constrained (or inventory-constrained) �rm can use the pricing decision to reduce the

supply-demand mismatch. The most relevant for us is the stream that deals with peak load pricing,

i.e., the pricing of economically non-storable commodities whose demand varies periodically. Many

authors have analyzed the problem under di�erent circumstances, including deterministic demand

(Steiner (1957)), rationing rules (Visscher (1973)), the use of di�erent technologies (Crew and

Kleindorfer (1976)), and uncertainty on both the demand and the supply side (Kleindorfer and

Fernando (1993)). See Crew et al. (1995) for a survey of the literature on peak load pricing. To the

best of our knowledge, only one work has considered inter-temporally substitutable consumption

(Crew and Kleindorfer (1986)), but assuming a deterministic demand, while demand uncertainty

plays a key role in our setting.

Other works have considered the role of pricing as a way to improve operational performance. All

the literature on revenue management, for instance, focuses on this topic (see Talluri and Van Ryzin

(2005) for a survey). In his paper on price dispersion, Dana Jr (1999) shows the operational bene�t

of shifting demand across time periods by rationing the number of seats o�ered at a lower price,

even when �rms cannot predict the peak time. In other settings, Lus and Muriel (2009) �nd that

pricing is more e�ective than technology choices at balancing supply and demand when a �rm sells

highly substitutable products, and Boyac� and Özer (2010) show how advanced selling and pricing

can be jointly used to reduce the demand-supply mismatch.

Our paper departs from the existing literature in that we study a way to reduce the supply-

demand mismatch through a novel pricing approach: namely, we study the use of correctly designed

threshold discounting o�ers in the presence of strategic customers.
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9. The Model

9.1. Preliminaries. Consider a capacity-constrained service provider that o�ers his services in two

time periods to a random-sized population of strategically acting customers. Customers prefer to

be served in a desirable �hot� time period over a less desirable �slow� time period (e.g., a theater

on Saturday versus Monday evening) and have varying degrees of preference. After brie�y describ-

ing the model, we �rst examine the traditional approaches typically employed by �rms in similar

circumstances�a choice between closing down or discounting on the slow period�and then we com-

pare the result with threshold discounting o�ers as popularized by online deal sites such as Groupon,

LetsGroop, BigDeal, Ihergo, etc.

Service Economics. We model provision of the service in two representative time periods: in a

hot period preferred by customers, at a price rh, and in a less preferred slow period.17 The service

provider has capacity to serve at most k customers during each service period, but has the �exibility

to shut down or choose any price in the slow period. When o�ering the service in a given period, the

service provider incurs �xed costs cF (for employees, utilities, etc...) plus an additional expense of

c for every customer served. The costs are not too prohibitive to preclude pro�ts, cF < k (rh − c).

When demand outstrips capacity, the provider rations capacity randomly amongst customers.

Customers. The service is made available to a market comprised of atomistic customers of aggre-

gated size x̃, where x̃ is an unobserved random variable with support R+, cumulative distribution

function G, and survival function Ḡ = 1−G. Customers value the service in the hot period at vh,

vh > rh, higher than their value in the slow period, ṽs , which varies across customers�i.e. customers

di�er in the degree to which they prefer the hot period over the slow period. Each customer's slow

period valuation, ṽs, is privately known only by the customer herself; it is drawn from a continuous

distribution, with cumulative density H, survival function H̄, and support [v, vh). Customers de-

sire to consume the service in at most one period, and they can choose their time of consumption

strategically�i.e. each customer takes into account the choices of other customers, thus forming

expectations of the service availability in di�erent periods. Customers use these re�ned beliefs, in

addition to the provider's announced shutdown and pricing decisions, and the private information

on the slow period valuation to make their consumption timing decisions.

17We place no restrictions on which period comes �rst.
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SERVICE

Customers visit in the period of
choice and are served
according to available capacity

VISIT

Each customer decides in
which period to visit

THE OFFER

The provider announces
whether he opens in the slow
period, and if so, what price
will be charged

Market size and customer 
valua!ons ’s are drawn

Figure 9.1: Timeline for the Traditional Approaches

The setup described above corresponds to a wide variety of consumer services such as movie

theaters, spas, opera houses, etc. Each of these services share the key characteristics of our setup�

desirable and less desirable service periods, single consumption, and per-period capacity that is

�xed in the short run.

9.2. The Traditional Approach: Seasonal Closure or Price Discrimination. Traditionally,

service providers either shut down in slow periods or remain open but o�er a discounted price. For

example, in many cities of mainland Europe where �xed costs of operation are high, restaurants

and museums are typically closed on Monday.18 On the other hand, in London, service providers

often stay open on Mondays, but o�er discounts and promotions to attract customers.19 Formally,

the service provider �rst decides whether to o�er the service in the slow period and, provided the

service is o�ered, what price to charge. The sequence of events is provided in Figure 9.1, and the

equilibrium solution is provided in the Appendix (SectionB.1).

The service provider's decision whether to open in the slow period is driven by a comparison of

the pro�ts from closing on the slow day (seasonal closure) and the pro�ts from opening and o�ering

a discount (price discrimination). Closing the business in the slow period implies that the service

provider gives up some of his capacity�capacity available during the slow period�in order to save

on the �xed cost cF . In this case, customers visit during the hot period, and the service provider

serves them up to capacity. The expected pro�t with this approach is

(9.1) Πc = (rh − c)
+∞ˆ

0

min(k, x) dG (x)− cF ,

where the subscript c stands for closure.

18See http://goo.gl/M52do.
19For example, Sticky�ngers Café, Queens bowling, The Lexi Cinema, and Cavendish Conference Venues run �Monday
madness� promotions, reducing their prices on Mondays, when they expect fewer customers.
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Alternatively, the service provider may o�er the service in both hot and slow periods, albeit at a

lower price rs ≤ rh in the slow period�where the subscript p stands for price discrimination. Under

this strategy, a customer's consumption timing best-response is driven by a trade-o� between the

higher utility she derives from the hot period on the one hand, and the better prices in the slow

period on the other, both adjusted by her rational expectation regarding service availability in each

time period.

Formally, a customer visits during the slow period i� her slow period valuation for the service is

higher than a threshold valuation v̂p (rs), which is the valuation that makes a customer indi�erent

between the two service periods, and is given by

(9.2) (vh − rh)

+∞ˆ

0

min

(
1,

k

H (v̂p)x

)
dGc (x) = (v̂p − rs)

+∞ˆ

0

min

(
1,

k

H̄ (v̂p)x

)
dGc (x) ,

where the LHS (RHS) represents the expected surplus of the customer from visiting during the

hot (slow) period, obtained as the product of the service surplus times the expected availability

of the service, and where Gc (x) =
´ x

0 udG (u) /
´ +∞

0 dG (u) is the cdf of the market size from

the perspective of an individual customer, i.e. conditional on her existence in the market (see

Deneckere and Peck (1995) for the derivation of customer posterior beliefs in these cases). Note

that customers' best-response visit strategy v̂p (rs) is unique since the LHS and RHS of (9.2) are

respectively increasing and decreasing in v̂p for every price rs. The expected pro�t for the provider

is given by

(9.3) Πp=max
rs

(rh−c)
+∞ˆ

0

min(k,H(v̂p (rs))x) dG(x) + (rs−c)
+∞ˆ

0

min
(
k,H̄(v̂p (rs))x

)
dG(x)−2cF


s.t. rs ≤ rh.

The potential advantage of price discrimination is best explained by looking at the e�ect of a price

reduction on pro�t. To see this, let θ be the discount level set by the �rm, such that rs = (1− θ) rh.

The �rst derivative of the pro�t under price discrimination with respect to the discount θ can then

be written as
d

dθ
Πp(θ)=
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(9.4) −
+∞ˆ

0

min

(
k,H(v̂p(θ))x

)
dG(x)

︸ ︷︷ ︸
margin loss

+

+∞ˆ

0

dH̄(v̂p(θ))

dθ
rh

(
1
x<k(H̄(v̂p(θ)))

−1−1x<k(H(v̂p(θ)))−1 (1−θ)
)
xdG(x)

︸ ︷︷ ︸
operational effect

where v̂p(θ) is short notation for v̂p(rs (θ)). A discount has two consequences for the �rm: it

reduces the margin in the slow period (�rst component) and it shifts some demand from the hot

to the slow period (second component). This second component captures the operational e�ect

of a discount: if the discount is not excessive, this demand shift improves capacity utilization by

rebalancing demand across the two service periods, thereby reducing the demand-supply mismatch

(SectionB.2). This rebalancing of demand, often achieved via price reductions in the slower period,

is typically referred to in the operations literature as demand smoothing. The optimal price is the

one that optimally trades o� the bene�ts of higher margins and those derived by demand smoothing.

In other words, under price discrimination a �rm trades o� margins and capacity utilization (see

Lemma 7 in Appendix A for more details).

The �rm's expected pro�t with the traditional approach is therefore Πa = max (Πc,Πp), where

Πc and Πp are the pro�ts if the �rm closes on the slow day or not, de�ned in (9.1) and (9.3),

respectively. While the �rm must decide ex-ante whether to close in the slow period (seasonal

closure) or open and o�er a discount (price discrimination), it is instructive to compare ex-post

pro�ts as a function of market realization, to examine when it would have been better to open, and

when it would have been better to close. Put di�erently, the next Lemma provides the strategy

that would be followed by an omniscient �rm, a �rm that could observe the market size from the

start.

Lemma 2. The realized pro�ts under price discrimination are higher than under seasonal closure

i� the market size realization is higher than a critical level, x◦. This critical market size is greater

than capacity k, and it increases in both the �xed costs of opening cF and the marginal cost c, i.e.

x◦ > k and d
dcF

x◦ > 0, d
dcx
◦ > 0.

Figure 9.2 shows the realized, ex-post pro�t of price discrimination and closure, together with

their di�erence, as a function of realized market size. When market size is low, closing on the

slow day is preferred for two reasons: �rst, it saves on �xed costs, and second, it prevents the
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Cri�cal
level

Profit

Market size

Price Discrimina�on (P)

Seasonal Closure (C)

Difference (P-C)

Capacity k is binding 
under seasonal closure

Capacity k is binding in 
the hot period under 
price discrimina�on

Capacity k is binding in 
both periods under price 
discrimina�on

k

Figure 9.2: Pro�ts from Price Discrimination and Closure

lower-priced slow period from cannibalizing sales in the higher-priced hot period.20 The advantage

of closing is the highest when market size is equal to capacity k. Any higher market state results

in lost sales with closure, but corresponds to higher sales if the �rm is open in the slow period.

Eventually, this makes price discrimination preferred to closure when market size is higher than x◦.

The critical market size x◦ increases when �xed and variable costs (cF and c) are higher, because it

takes more customers to cover the �xed costs incurred in the slow period, either because the �xed

costs themselves are higher, or because slow period margins are lower.

Taken together, the above discussion highlights the key weakness of the traditional approach. The

service provider is forced to make an ex-ante trade-o� between the preferred strategy for low market

states, closing and bearing the risk of losing sales due to limited capacity, and the preferred strategy

when the market state is high, opening and bearing the risk of not repaying the augmented �xed

costs due to thinner margins. We next examine a threshold discounting scheme, which alleviates

this trade-o�.

20Sales cannibalization is a consequence of the operational e�ect of discounts (demand shift) that takes place in the
absence of capacity shortages; it is, in essence, the harmful side of demand smoothing.
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10. Threshold Discounting

Threshold discounting allows customers to visit a �rm and avail themselves of the service in the

slow period at a discounted price, contingent on enough other customers showing interest in doing

the same. In this section, we analyze the bene�ts of o�ering such a deal to strategically acting

customers.

10.1. Description and Equilibrium.

Sequence of Events. Figure 10.1 illustrates the sequence of events for a threshold discounting

scheme. At the beginning, the service provider announces a deal: the service will be o�ered at

a discounted price rs < rh to all customers who subscribe to the o�er, but only if at least n of

them end up signing up for it. If less than n customers sign up for the deal, the service provider

will close during the slow period.21 Each customer then decides whether to subscribe to the deal or

not.22 After the subscription deadline passes, the �rm communicates whether the deal's activation

threshold was reached or not, and therefore whether the deal is active or not. Customers then

choose a period to visit, and consume the service.

In order to study this game, it is convenient to break it into two parts: the initial deal o�er,

and the following continuation game (Fudenberg and Tirole (1991), page 331), in which customers

subscribe, the �rm reveals the deal outcome, and then customers visit the �rm in a period of their

choice. This continuation game, which follows the initial deal o�er, is strategically played only

among customers: in fact, in the deal outcome disclosure stage the �rm simply reveals whether the

pre-announced threshold was reached (in Section 11.1 we consider an alternate design where the

21A weaker form of threshold discounting is one where only the pricing decision is determined by subscribers, and
the �rm stays open in both periods. In this case the results are very similar, as brie�y discussed in Section 13.
22We assume that subscriptions are not binding for customers; if subscriptions are binding, i.e., customers are pre-
charged the slow period price rs upon subscription, all our results are identical and in fact the analysis is simpler.

Customer Continuation Game

SERVICE

Customers visit and
are served according
to available capacity

SUBSCRIPTION

Each customer decides
whether or not to
subscribe to the offer

DEAL OFFER

Discounted price will be available
in the slow period if at least
customers subscribe

DEAL OUTCOME DISCLOSURE

The provider reveals if the
threshold was reached
and therefore the deal is
ac!ve

VISIT

Each customer
decides in which
period to visit

Market size and 
customer valua!ons 

’s are drawn

Figure 10.1: Timeline of Threshold Discounting
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�rm can freely make his activation decision after observing the number of subscribers). In what

follows, we �rst proceed with the analysis of the customer continuation game for a given deal o�er

(rs, n), and then we include the deal o�er decision made by the �rm to �nd the equilibrium of the

full game.

Customer Continuation Game. We examine the best-response strategies of an individual customer

starting from the last stage of the continuation game, when she must decide in which period to

visit the �rm. When the deal is not active, the service is not available during the slow period and

therefore she visits in the hot period. When instead the deal is active, she visits in the period in

which she expects to obtain the highest surplus. Speci�cally, the visit strategy νi of customer i is a

function of her service valuation for the slow period vs,i, the price that she will be charged during

the slow time period, i.e. rs if she has previously subscribed to the deal and rh otherwise, and

the expected service availability in each time period. To compute expected service availability, the

customer takes into account the vector of visit strategies of all other customers, ν−i, and forms a

posterior belief on the realized market state conditional on the information that the deal is active,

that is, the posterior distribution of the market size given that at least n customers subscribed

employing the subscription strategy σ−i, computed using Bayes' rule (see subsubsection B.4.1 of

the Appendix).

Next is the subscription stage, in which we assume that a customer subscribes i� this increases her

expected future payo� (or alternatively that the frictional cost to subscribing is small). Speci�cally,

the best-response subscription strategy of customer i is a function of her valuation for the service

during the slow period vs,i, of the announced deal price rs and of the threshold n, as well as

the vectors of subscription and visit strategies of all other players, σ−i, ν−i. The subscription

stage belongs to the class of Coordination games �rst de�ned by Schelling (1960): in this type of

game there are typically multiple equilibrium outcomes, where if enough customers coordinate on a

certain decision, a single customer has no incentives to deviate from what the majority does. The

multiple Perfect Bayesian Equilibria that arise can be meaningfully grouped into two types. In type

I equilibria, customers subscribe if their valuation for the slow period is su�ciently high, while in

type II equilibria, customers never subscribe to the deal: as a consequence, the deal is never active,

and therefore not subscribing is optimal. We discard type II equilibria from our analysis for two

reasons. First, because we show that a type I equilibrium Pareto Dominates a type II equilibrium;

that is, customers are better o� coordinating on a type I equilibrium than on a type II equilibrium.
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The reason is that by subscribing to the deal, they have a chance to get a discount and visit in their

preferred slow period, while at the same time increasing availability for those who did not subscribe

(see Appendix, subsubsection B.4.6). The second reason is that type II equilibria do not exist if

we consider the more general case of a consumer population where only a fraction of customers are

strategic, as in our extension in Section 10.3. Therefore, we restrict our attention hereafter to type

I equilibria, which we characterize in the next lemma.

Lemma 3. Equilibrium strategies in Customer Continuation Game

In a type I equilibrium:

(1) A customer subscribes to the deal i� her valuation for the service in the slow period is higher

than a certain threshold.

(2) A customer visits during the slow period i� the deal is active and her valuation is higher

than a threshold; she visits during the hot period otherwise.

(3) The subscription and the visit thresholds coincide.

In equilibrium, customer subscription and visit strategies are of a threshold type, and the thresh-

olds for the two strategies coincide, since customers who would visit in the slow period are the same

as those who subscribe to the deal. Thus, customer behavior can be fully summarized by just one

threshold, v̂t, such that a customer with a slow-period valuation lower than v̂t does not subscribe to

the o�er and visits in the hot period, whereas a customer with a slow-period valuation higher than

v̂t subscribes to the o�er, and then visits in the slow period if the deal is active and in the hot period

when the deal is not active. The threshold valuation v̂t is the one that, conditional on the deal being

active, makes a customer indi�erent between visiting in the slow and in the hot period�since when

the deal is not active both subscribers and non-subscribers visit on the hot period and earn the

same surplus. The following equation compares the threshold customer's surplus in each period,

when the deal is active, for any deal o�er (rs, n):

(10.1) (v̂t−rs)
+∞ˆ

nH̄(v̂t)
−1

min

(
1,

k

H̄ (v̂t)x

)
dGc (x) = (vh−rh)

+∞ˆ

nH̄(v̂t)
−1

min

(
1,

k

H (v̂t)x

)
dGc (x) .

The LHS represents customer surplus when she visits in the slow period, and the RHS when

she visits in the hot period. Unfortunately, for a general deal o�er (rs, n) there can be multiple

solutions to (10.1), and consequently multiple type I equilibria. An increase in the threshold, v̂t,
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implies an increase in the number of visitors in the hot period and a corresponding decrease in the

number of visitors in the slow period. While the hot period surplus decreases when v̂t increases

because a higher fraction of customers visiting in the hot period reduces availability, the slow period

surplus generally does not increase in v̂t. A higher threshold v̂t implies fewer customers visiting in

the slow period, which should increase availability (the visit e�ect), but it also means that a smaller

fraction of customers subscribe to the deal, which implies that the deal is active only when demand

is higher, which in turn implies lower availability (the subscription e�ect). The overall e�ect is

therefore ambiguous.

However, we can show that there exists a unique solution to (10.1) when the announced price of

the deal, rs, is higher than a certain level r̄. To understand the drivers of this e�ect, it is instructive

to rewrite (10.1) in terms of a comparison between relative availability and relative surplus in the

two periods:

(10.2)
v̂t − rs
vh − rh

=

´ +∞
nH̄(v̂t)

−1 min
(

1, k (H (v̂t)x)
−1
)

dGc(x)

´ +∞
nH̄(v̂t)

−1 min
(

1, k
(
H̄ (v̂t)x

)−1
)

dGc(x)
.

The LHS of the rewritten equation is the ratio of the service surplus in the slow period to that in

the hot period, whereas the RHS is the ratio of service availability in the hot period to that in the

slow period. The ratio of the service surplus (LHS) is always increasing in the threshold, v̂t. When

the deal price rs is higher than r̄ = H−1
(

1
2

)
− vh + rh, a higher fraction of customers visit in the

hot period, i.e. H (v̂t) ≥ 1
2 , which ensures that the ratio of service availability always decreases in

the customer threshold, v̂t. To see why, note that, as before, a higher threshold implies a smaller

fraction of visitors in the slow period and a higher fraction in the hot period, thus decreasing the

service availability ratio (the visit e�ect). Also as before, a higher v̂t implies fewer subscribers, which

means that the deal is active only when demand is higher (the subscription e�ect): however, since

rs ≥ r̄ ⇐⇒ H (v̂t) ≥ 1
2 , this implies that the impact of higher demand in the hot period is more

severe than in the slow period. Hence, a price rs ≥ r̄ ensures that there exists a unique equilibrium

for the customer continuation game. We will show that this is always the case for the full game.

Firm Optimal Announcement and Equilibrium Outcome. The service provider chooses the slow

period price rs and the activation threshold n that maximize expected pro�t, taking into account

customer best-response strategy v̂t (rs, n) characterized in (10.1). The expected pro�t of the �rm is
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then

Πt=max
rs,n

[
(rh−c)

n
ᾱtˆ

0

(min(k, x)−cF ) dG(x)+

+∞ˆ
n
ᾱt

(min(k, αtx)(rh−c)+min(k,ᾱtx)(rs−c)−2cF ) dG(x)

]

s.t. rs < rh, n > 0,

where αt = H (v̂t (rs, n)) and ᾱt = H̄ (v̂t (rs, n)) are the fractions of customers that visit during

the hot and slow periods, respectively, when the �rm announces the deal (rs, n).

Lemma 4. The �rm can restrict to deal o�ers with a discounted price higher than r̄ without any

reduction in his expected pro�t.

This result states that the �rm needs to consider only announcements with a discounted price

higher than r̄, because it is never optimal to discount so much that more than half of the customers

visit in the slow period when the deal is active. This Lemma shows that even though there might be

multiple type I equilibria in the customer continuation game that ensues after the deal is announced,

there is a unique equilibrium for the full game, because the �rm is always better o� announcing

a deal for which there exists a unique customer best response v̂t (rs, n). We next compare the

pro�ts under the unique equilibrium outcome of the threshold discounting game with those from

the traditional approach, that is, with the highest pro�t between closure and price discrimination.

10.2. Comparing Threshold Discounting with the Traditional Approach.

Theorem 7. Threshold discounting outperforms the traditional approach, i.e. Πt > Πa.

The superior performance of threshold discounting arises from its most characteristic feature, i.e.,

the activation threshold, which gives rise to two independent sources of advantage: a responsive

duality e�ect and a strategic scarcity e�ect.

Responsive Duality. Lemma 2 showed that closing in the slow period ends up earning a higher

pro�t than opening and discounting if and only if market size is below a threshold. Unfortunately,

a �rm considering the traditional approach needs to decide whether to employ price discrimination

or seasonal closure ex-ante, without knowing the market state, and the choice that maximizes the

expected pro�t may turn out to be wrong in retrospect once market size is realized and customers

visit the �rm. With threshold discounting, the �rm does not have to trade o� the relative strengths

of seasonal closure and price discrimination, because he can get the best of both worlds.
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An appropriately designed threshold discounting o�er allows the �rm to ensure that the deal

gets activated only in those states of the world in which the market size turns out to be above

a threshold of his choice (Appendix, SectionB.8, Lemma 8). In such a contingency, the �rm is

e�ectively imitating the demand-balancing e�ect of a traditional price discrimination approach. On

the other hand, when the market size is below this threshold, the deal is not activated and the

service is not o�ered in the slow period, so that the �rm achieves �xed-cost optimization and full

margins by e�ectively using the seasonal closure approach. Taken together, the activation threshold

endows threshold discounting with a responsive duality, i.e. a built-in, market-responsive dual

mechanism that allows the �rm to use the information supplied by customers to determine what

demand manipulation technique to employ, an advantage unavailable with the traditional approach.

This responsive duality is not the only advantage of threshold discounting, the bene�ts go further.

Even more interesting is a strategic scarcity e�ect created by threshold discounting, which allows a

�rm to better price discriminate strategic customers than does the traditional price discrimination

approach, thus improving capacity utilization even further.

Strategic Scarcity E�ect. Customers strategically think about price and availability and they react

di�erently to a slow-period discount that is active contingent on high market size, as opposed to a

discount that is always active. In particular, we �nd that a discount conditional on a high enough

market size increases the fraction of demand diverted from the hot to the slow period, as compared

to the same level of a non-contingent discount. Formally, we �nd that for any activation threshold

n > 0 and discounted price r ≥ r̄ we have that H (v̂t (r, n)) < H (v̂p (r)) (subsubsection B.7.1 of the

Appendix). We call this observation the strategic scarcity e�ect.

Strategic scarcity is bene�cial because it accomplishes the same result as would a price reduction,

that is, attracting more customers during the slow period to achieve a more equitable allocation of

demand across periods, but it comes as a free lunch, i.e., the provider enjoys the additional reallo-

cation of demand without paying through higher discounts or lost margins. Put di�erently, strate-

gic scarcity is bene�cial because it magni�es the returns from any discounting level by increasing

strategic customers' elasticity to price reductions compared to the traditional price discrimination

approach.

The key cause of this e�ect lies in the di�erence in service availability between the hot and slow

periods under the two discount schemes. Under threshold discounting, the fact that the deal is active

signals to the customers that the market size is high enough. This implies that availability will be
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lower in both time periods, but more so in the hot period, making the slow period more desirable

to customers.23 Thus, a customer who is indi�erent between the two periods under normal price

discrimination is instead willing to visit during the slow period under threshold discounting when

the deal is active, because the active deal signals that the market size is higher than average, hence

the odds of being served shift further in favor of the slow period. Overall, the higher e�ectiveness

of threshold discounting due to strategic scarcity e�ectively implies that the service provider can

achieve the same level of expected capacity utilization that a price discrimination strategy would,

while keeping the expected unit margin higher.

A novel operational advantage. To summarize, the advantages of threshold discounting stem from

1) its responsive dual nature, imitating the �xed cost savings of the seasonal closure approach

when market size is low and the demand-balancing e�ect of the price discrimination approach when

market size is high; and 2) increasing customer responsiveness to slow-period discounts by unraveling

market size, which enables the customer to use this information in estimating service availability

and self-selecting the consumption period, thus increasing capacity utilization for any discount level

o�ered.

In essence, a threshold discounting o�er acts as a coordination mechanism: it insures that cus-

tomers are better o� participating, but it also insures that their participation ultimately bene�ts

the �rm. This coordination is notable because when it comes to pricing decisions, getting buyers

and sellers to agree is di�cult, often leading to zero-sum games in which making both parties better

o� is not possible. Such bene�cial coordination is possible in this case because of three synergic

factors: the discount encourages customers to subscribe, the activation threshold insures a �respon-

sive discount� that triggers when market size is high enough, and the �rm is better o� o�ering

discounts when the market size is high (as the need to smooth demand arises).24 To see why en-

suring customers participation and employing a �responsive discounting� scheme is not necessarily

bene�cial, consider the opposite case in which the �rm o�ers a discount when the threshold is not

met. This would still encourage customers to subscribe, and it would still allow the �rm to respond

23A simple example can clarify this property: suppose that capacity is 10, that 60% of customers visit in the hot
period, and that the market size is either 10, 20 or 30 with equal odds; then the expected availability of the hot

period relative to the slow period is 1+10/12+10/18

1+1+10/12
= 43

51
w 0.84 over all market states,

10/12+10/18

1+10/12
= 25

33
w 0.76 over

the two higher states, and
10/18

10/12
= 2

3
w 0.67 for the highest state; that is, the expected service availability of the hot

period relative to the slow period decreases as we consider only increasingly higher states�as strategic customers do
when they learn that the activation threshold has been reached.
24This coordination is still possible but more di�cult to achieve if the distribution of customer preferences is itself
uncertain. These additional results are available from the authors upon request.
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to di�erent market conditions with di�erent pricing; however, this �responsive discounting� would

strictly reduce the pro�t of the �rm, even in the absence of �xed costs, because is would increase

sales cannibalization when the market size is lower, and it would not improve demand smoothing

when market size is higher�that is, when this is needed (subsubsection B.8.1).25

10.3. A Mixed Population of Strategic and Myopic Customers. The above analysis has so

far assumed that all customers are strategic, in the sense that they all account for other customers'

subscription and visit responses to the discounting scheme o�ered by the �rm when they make their

decisions. Arguably, not all customers are sophisticated enough to do this: Li et al. (2014), for

example, empirically estimate the percentage of strategic consumers in the airline industry to be

between 5.2% and 19.2%. In this section, we extend our analysis to consider a mixed population in

which a fraction γ of customers are strategic, and the remaining fraction 1− γ are myopic, in that

they do not account for the decisions of other customers. This means that in making her decision, a

myopic customer naively ignores both the odds of the deal being active and the expected availability

in each period, since these depend respectively on the subscription and visit strategies of the other

customers. This customer subscribes/visits in the slow period i� her service surplus is higher than

in the hot period, i.e. i� vs − rs > vh − rh, where vs is her slow-period valuation. The pro�t of

threshold discounting when only a fraction γ of the population is strategic is given by

Πγ
t = max

rs,n

[
(rh−c)

n ᾱt,γ(rs,n)−1ˆ

0

(min(k, x)−cF ) dG(x) +

+

+∞ˆ

n ᾱt,γ(rs,n)−1

(min(k, αt,γ(rs, n)x)(rh−c) + min(k,ᾱt,γ(rs, n)x)(rs−c)−2cF ) dG(x)

](10.3)

s.t. rs < rh, n > 0,

where αt,γ = γH (v̂t (rs, n, γ)) + (1− γ)H (vh − rh + rs) is the fraction of the population that

in equilibrium visits the �rm during the slow period when the deal is active, ᾱt,γ = 1 − αt,γ , and

25As pointed out in the introduction, anecdotal popular press discussions of the use of threshold discounting have
focused on their network e�ects and a consequent demand increase. Note that our model deliberately leaves out
network e�ects to focus on operational performance, and our e�ects stem solely from the better demand-supply
matching enabled by threshold discounting. Further, all the results presented above continue to hold for cF = 0, that
is, even when there are no economies of scale. This suggests that these innovative and pro�t-enhancing schemes do not
need to be the exclusive prerogative of high-volume businesses, but rather can be employed by small businesses�such
as those featured by Groupon and its competitors�with equally bene�cial results.
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where v̂t (rs, n, γ) is de�ned as in (10.2), with H (v̂t) and H̄ (v̂t) being replaced by αt,γ and ᾱt,γ

respectively.

Theorem 8. With a mixed population of customers, threshold discounting still outperforms the

traditional approach, i.e. both price discrimination and seasonal closure. This is true even when the

population is entirely myopic.

As explained above, the advantage of threshold discounting is driven both by its ability to mimic

closure and price discrimination when most appropriate, as well as from the strategic scarcity e�ect

it creates. While the strategic scarcity e�ect relies on customers' ability to account for the decisions

of other customers when making their decisions, the responsive duality advantage exploits the

information contained in the number of subscribers that does not require customers to be strategic,

but rather to signal if they are planning to visit during the slow period. Thus, even when there

are no strategic customers in the population, the operational advantages of threshold discounting

persist.

Next, we study the impact that the proportion of strategic customers in the population has on

the pro�ts of a service provider employing threshold discounting. Most of the existing literature on

strategic customers (Su and Zhang (2008); Liu and van Ryzin (2008); Cachon and Swinney (2009,

2011)) has either proven that strategic customers are a threat to a �rm's pro�t, or has taken it

as a given and developed countermeasures to reduce their negative e�ect.26 The typical setting

often evoked is one in which an apparel retailer sells a �nite inventory over a �nite season, and may

resort to price markdowns at the end of the season to dispose of leftover inventory. By anticipating

price markdowns, strategic customers can decide to postpone their purchases until the end of the

season, thus reducing pro�ts for the �rm. Our setting shares many characteristics with this typical

setting. In Cachon and Swinney (2009), for example, strategic customers can decide to purchase in

two di�erent periods�during the season, when their valuation for the product is higher, or at the

end of the season, when their valuation is lower�which maps exactly to the hot and slow periods

in our framework. As in our paper, in Cachon and Swinney (2009) the �rm o�ers a reduced price

in the period that customers value the least. Finally, as in our paper, strategic customers take into

account the actions of other customers and act to maximize their expected surplus. Despite these

26A rare exception is the empirical work by Li et al. (2014), which argues that if, on the one hand, strategic customers
reduce margins, they on the other increase demand, either by forcing the �rm to reduce prices, which in itself raises
demand, or by postponing purchases and thus having a second purchasing opportunity. Thus, the e�ect on pro�t
may go either way. As will soon be clear, our result di�ers from theirs, and it stems from a di�erent reason.
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similarities, the e�ects of strategic customers in our setting are in stark contrast with those in the

classic settings studied in the literature.

Theorem 9. The pro�ts under threshold discounting are higher with more strategic customers in

the population. Formally, if γ2 > γ1, then Πγ2
t > Πγ1

t .

Strategic customers di�er from myopic ones in that, by accounting for the actions of the other

players, they can better account for future prices and availability, and act accordingly. In the classic

setting, this leads strategic customers to wait for otherwise unanticipated price markdowns, and

this is always harmful for the �rm. In our setting, strategic behavior has di�erent implications.

First, strategic customers account for the visit decision of the other customers, which allows them

to form expectations on the service availability of each period, accounting for the odds of getting

a unit of service before they visit, which is in the interest of the �rm. Second, they also account

for the subscription decision of other customers, which allows them to re�ne their expectation on

service availability upon knowing that the deal is active (strategic scarcity e�ect) which also goes in

the interest of the �rm, as already discussed. In our context, there is no di�erence in how strategic

and myopic customers account for price reductions, since the �rm clearly announces them upfront

before the subscription stage�and with good reason, as discussed below. Hence, the sophisticated

decision process of strategic customers always has a bene�cial impact for the �rm.

It should be noted that the �rm's initial commitment to a price reduction has nothing to do with

the use of price commitment strategies as a countermeasure to strategic customers, as for example

studied in Su and Zhang (2008). In their setting, the �rm commits to high enough prices at the

end of the season to induce strategic customers to purchase in-season, i.e., in the �hot� period.

In our setting, the �rm announces price reductions to achieve the opposite e�ect, i.e., redirect

customers from the hot period into the slow period. The di�erence arises because they consider

a �rm selling inventory of a durable good, while we consider a service �rm selling capacity. For

a �rm selling a physical product, a customer who decides to purchase in the low season rather

than in the high season is always harmful, because it reduces margins: hence, the �rm commits to

high prices in the low season to prevent such behavior from occurring. For a service �rm selling

capacity, a customer who decides to purchase in the slow period rather than in the hot period

may instead be bene�cial, because it increases sales whenever capacity in the hot period is sold

out, but there is still spare capacity in the slow period: hence, the �rm commits to (appropriate)
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price reductions in the slow period to incentivize such behavior. Basically, the perishable nature

of capacity transforms strategic customer's inter-temporal purchasing decisions from a threat to

margins into an opportunity to increase capacity utilization and sales, which is why the �rm is

better o� announcing price reductions to all customers.
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11. Design Considerations in Threshold Discounting Offers

The above analysis examined one particular design of threshold discounting, that in which the

�rm pre-commits to the activation threshold for the deal, if the deal is active or not is announced

before the beginning of both time periods, and the discount can be used only during the slow period.

In practice, we encountered numerous variations of this basic setup and, at di�erent points of time,

Groupon experimented with other arrangements. Hence, in this section we examine alternative

designs and compare them with the original design in Section 10, henceforth referred to as classic

threshold discounting.

11.1. Opaque Activation Rule. In classic threshold discounting, the �rm commits to a discounted

price and an activation threshold before customers make the decision to subscribe or not: this

commitment ties the service provider's hands, forcing him to abide by a speci�c activation rule. A

potentially better design is one in which the provider does not publicly commit to a decision rule

for activation, and instead makes the activation decision after he observes how many customers

have subscribed: it is in fact well-known that postponing a decision to a later time is bene�cial

if this allows the acquisition of new information that is relevant for that decision�as in this case,

where subscriptions contain new information on the market state, which is relevant to making the

activation decision. With such a design (Figure 11.1) the service provider announces the discount

price ro before the customers' subscription decision, yet does not commit to any activation rule.

After customers have subscribed, the provider observes the number of subscribers, and only then

announces whether or not the deal is active. Designs of this kind are quite common in Customer

Voting Systems, whereby customers may be asked to vote for new product designs that could be

developed by the �rm in the near future, but the �rm does not commit to any speci�c development

rule in advance.27

27See ? and the customer voting system at Modcloth.

SERVICE

Customers visit and
are served according
to available capacity

SUBSCRIPTION

Each customer decides
whether or not to
subscribe to the offer

DEAL OFFER

Discounted price may be
available in the slow period.
The provider does not commit
to any par cular ac va on rule

DEAL OUTCOME DISCLOSURE

Upon coun ng the number
of subscrip ons, the provider
decides and reveals whether
the deal is ac!ve or not

VISIT

Each customer
decides in which
period to visit

Market size and 
customer valua!ons 

’s are drawn

Figure 11.1: Timeline of Threshold Discounting with Opaque Activation Rule
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SUBSCRIPTION

Each customer decides
whether or not to
subscribe to the offer

DEAL OFFER

Discounted price will be
available in the slow period
if at least customers
subscribe

DEAL OUTCOME DISCLOSURE

The provider reveals if the
threshold was reached
and the deal is ac ve

VISIT - HOT PERIOD

Customers who so prefer
visit in the hot period and
are served according to
available capacity

VISIT – SLOW PERIOD

Customers who so prefer visit in
the slow period; if the deal is
ac ve they are served at price rs

according to available capacity

Market size and 
customer valua ons 

’s are drawn

Figure 11.2: Timeline of Threshold Discounting with Late disclosure

However, postponing the activation decision to a later time may have its drawbacks, because

committing to an activation threshold can give the �rm a strategic �rst-mover advantage over the

customers. Hence, the bene�t of an opaque activation rule will depend on the relative strengths

of the informational advantage of postponement on the one hand, and the strategic advantage of

commitment on the other. The next theorem compares the two designs.

Theorem 10. O�ering threshold discounts with a committed threshold-activation rule, as in the

classic threshold discounting, is better for the �rm than o�ering discounts with an opaque activation

rule.

As conjectured, by not committing to a speci�c threshold in advance the �rm loses the strategic

advantage of being able to use the activation threshold to �steer� customers towards the desired

equilibrium. Unexpectedly, however, postponing the activation decision does not provide the �rm

with any informational advantage, despite the fact that this allows the �rm to acquire new infor-

mation that is relevant to making the deal activation decision. The reason for this unexpected

result is that, though relevant, the information contained in the subscriptions always leads to the

optimal activation rule being a threshold decision, which the �rm can determine already with the

information available before the customer subscription stage. Hence, committing to a threshold

activation rule upfront provides strategic bene�ts and no informational disadvantage, and a classic

threshold discounting outperforms one with an opaque activation rule.28

11.2. Time when the Outcome of the Deal is announced. In classic threshold discounting,

the service provider releases information about the outcome of the deal, i.e., whether or not it is

active, before both time periods begin, allowing customers to make a consumption decision knowing

28There can be cases in which some additional relevant information is exogenously revealed between the time the
deal is announced and the time subscriptions are closed, as uncertainty over weather conditions in the case of an
outdoor performance: in these cases, postponing the activation rule may lead to an informational advantage, and
which design is better depends on the relative strength of the bene�ts of commitment and those of postponement.
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if the threshold has been reached. However, in cases in which there is enough time between the

hot and slow periods, the service provider could decide to disclose such information after the hot

period is over but before the slow period begins.29 Strategic customers are responsive to price

reductions, but also to changes in perceived availability. Liu and van Ryzin (2008) and Yin et al.

(2009) have shown how a �rm dealing with strategic customers can bene�t from increasing the

rationing risk they perceive. It is therefore important to study the impact of postponing the deal

outcome revelation to customers, since doing so increases the uncertainty�hence the risk�of their

subsequent visit decisions, and could therefore lead to a similar e�ect. The sequence of decisions and

information revelation is described in Figure 11.2. As in classic threshold discounting, the terms

of the deal�the discount and the activation threshold�are announced upfront. The only di�erence

is that the outcome disclosure stage now follows the hot period, whereas in the original model it

preceded both the hot and slow periods.

Under late disclosure, the pro�t of the service provider takes the form

Πl=max
rs,n

[
(rh−c)

n
ᾱlˆ

0

(min (k, αlx)−cF )dG(x)+

+∞ˆ
n
ᾱl

(min (k, αlx)(rh−c)+min (k,ᾱlx)(rs−c)−2cF )dG(x)

]

s.t. rs < rh, n > 0,

where ᾱl and αl are the fractions of subscribers and non-subscribers, and are a function of the

deal discount, rs, and activation threshold, n.

Theorem 11. Classic threshold discounting, i.e. with early disclosure, achieves a higher pro�t for

the �rm than threshold discounting with late disclosure.

Unlike in other similar settings, inducing a rationing risk on strategic customers�by postponing

the disclosure decision�turns out to be unwise. Late disclosure of the deal outcome has two main

implications for the �rm. First, it impairs the inter-temporal substitutability of demand. Speci�-

cally, in the event that the deal is not active, the �rm loses sales to those customers who subscribed

to the deal and did not visit the service provider during the hot period because they intended to

visit during the slow period. The second implication is a consequence of the �rst, and it is of a

strategic nature. Given that subscribing to the deal and waiting for the slow period does not guar-

antee that the provider will be open at that time, strategic customers are less willing to visit during

29If the slow period comes before the hot period, this scheme is obviously not viable.
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SERVICE

Customers visit and
are served according
to available capacity

DEAL OFFER

Discounted price will be available
in both periods if at least
customers subscribe. Otherwise only
the hot period will be open.

SUBSCRIPTION

Each customer decides
whether or not to
subscribe to the offer

DEAL OUTCOME DISCLOSURE

The provider reveals if the
threshold has been reached
and the deal is ac!ve

VISIT

Each customer
decides in which
period to visit

Market size and 
customer valua!ons 

’s are drawn

Figure 11.3: Timeline for Unrestricted Threshold Discounting

the slow time period than in the case of early disclosure, i.e. αl (r, n) > αt (r, n) for every price

r ≥ r̄ and every activation threshold n > 0. This has negative implications for pro�t, because the

service provider needs to o�er customers a higher discount for them to visit during the slow time

period, further reducing margins. Basically, this strategic implication works in the opposite way of

the strategic scarcity e�ect described in the discussion of Theorem 7, reducing the e�ectiveness of

discounts as inter-temporal demand-balancing devices.

Taken together, the previous results show that providing customers with a transparent activation

rule and full and timely information on the activation of the deal makes threshold discounting

schemes most potent, or put di�erently, the less the uncertainty on the customer side, the more

e�ective threshold discounting becomes at increasing capacity utilization and pro�t.

11.3. Time Restricted Discounts. While classic threshold discounting restricts the use of the

discount to slow periods, discounted o�ers featured by Groupon and its numerous copycats often

place no constraints on the time period of service, i.e., if activated, the discount can be used during

hot and slow periods alike. The timeline for these type of deals, henceforth named unrestricted

threshold discounting (subscript u), is otherwise the same as for classical threshold discounting, and

it is described in Figure 11.3.

Theorem 12. Classic threshold discounting achieves a strictly higher pro�t for the �rm than unre-

stricted threshold discounting.

Classic threshold discounting is strictly better than unrestricted threshold discounting: by allow-

ing customers to enjoy a reduced price in any period of their choice, the service provider cripples

the main advantage of price reductions, that is, the ability to price discriminate between the hot

and slow periods in order to redirect some demand to the latter and improve capacity utilization.

Despite charging the same price in both periods, unrestricted discounting can still redirect some

demand to the slow period; in fact, a price reduction increases the service surplus in both periods,
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increasing the surplus loss for a customer from not obtaining a unit of service, thus making cus-

tomers more willing to visit in the slow period where availability is higher. However, the magnitude

of this demand-balancing e�ect is small compared to what can be achieved using price discrimina-

tion. Moreover, the cost associated with a price reduction under unrestricted threshold discounting

is much higher than under classic threshold discounting, as the service provider reduces his margin

in both time periods. As a result, under unrestricted threshold discounting, price reductions come

at a higher cost and yield a smaller operational bene�t than classic threshold discounting.

While the overall bene�t of unrestricted threshold discounting will ultimately depend on the

sum of many e�ects (see for example Edelman et al. (2011)), from a purely operational point of

view this design has severely unattractive features, and in many cases a service provider would be

better o� simply using the traditional approaches. In our numerical study (Section 12) we �nd that

a traditional approach is better than unrestricted threshold discounting in 90% of our scenarios,

resulting on average in a 2% higher pro�t. This analysis may help explain the oft-repeated assertion

that Groupon-like deals were worse for many businesses than just following the traditional approach

to managing demand and capacity.30 Perhaps the wide use of unrestricted discounting has been a

consequence of the type of contracts used in the industry when a service providers channels its o�er

through powerful intermediaries such as Groupon. Such contracts reward the intermediary with

a fraction of the revenues channeled through the deal: under unrestricted threshold discounting

the amount of revenues earned on subscribers is substantially higher compared to classic threshold

discounting�and so is the commission earned by the intermediary.

11.4. Focused Threshold Discounting. One way to potentially improve threshold discounting is

to observe that not all customers need to be incentivized to visit during the slow period. Customers

with a high enough slow-period valuation value the hot period almost as much as the slow period and

prefer to visit the �rm during the slow period even when no discount is o�ered due to higher service

availability. If we let nt be the equilibrium activation threshold in classic threshold discounting, then

this is true for vs ≥ v̂t
(
rh, n

t
)
. This means that classic threshold discounting is ine�cient, in that it

ends up providing unnecessary monetary incentives to these customers, a source of ine�ciency that

could be remedied by focusing the incentives on those customers who actually need them. Next, we

explain the intuition behind focused threshold discounting, and then study it formally.

30See, for example, �Groupon in retrospect�, poesie's cafe blog, September 2010, http://goo.gl/R4lJW
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SERVICE

Customers visit and
are served according
to available capacity

SUBSCRIPTION

Each customer decides
whether or not to
subscribe to the offer

DEAL OFFER

A discount on a specific external
service will be granted to subscribers
who visit in the slow period, if at
least customers subscribe

DEAL OUTCOME DISCLOSURE

The provider reveals if the
threshold has been
reached and the deal is
ac"ve

VISIT

Each customer
decides in which
period to visit

Market size and 
customer valua"ons 

’s are drawn

Figure 11.4: Timeline of a Focused Threshold Discounting

Consider an opera house performing Rigoletto on Saturday and Sunday nights. Potential cus-

tomers are comprised of active workers, who prefer Saturday over Sunday�albeit with di�erent

degrees of preference�and retired workers, who don't care about time and therefore prefer Sunday

evening due to higher availability. Consider a service desired by active workers but not desired by

retired workers, such as baby-sitting. Then a focused threshold discount that o�ers free baby-sitting

service to subscribers for the Sunday night show could redirect the desired number of customers to

Sunday without o�ering unnecessary discounts to retired workers, thus improving pro�ts.

To formalize this intuition, suppose that customers can be divided into two segments, one char-

acterized by strong time preferences (vs < v̄s) that attach to the external service a positive value

V > 0, and another with weak time preferences (vs ≥ v̄s) that �nd no value in the service, with the

frontier valuation v̄s being high enough. Speci�cally, let ve be the value attached by a customer to

an external service, where

(11.1) ve =


V if vs < v̄s

0 otherwise

with v̄s ∈
[
v̂t
(
rh, n

t
)
, vh − ε

]
,∀ε > 0.

Focused threshold discounting consists of promising subscribers not a discounted price, but rather

a discount on the external service if they visit during the slow period (Figure 11.4).

Theorem 13. Under the conditions in (11.1), focused threshold discounting improves pro�t for the

�rm compared to classic threshold discounting.

Indeed, when customers can be segmented in a way that links their time preferences to their

interest for some other service, the �rm can employ focused threshold discounting to improve the

e�ciency of his incentive system, thus achieving a higher pro�t.
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12. Numerical Study

In this section, we present the results of a numerical study that helps us illustrate the advantages

of classic threshold discounting, as presented in Section 10. We consider the usage of threshold

discounting at a potential service provider, the opera house Teatro Regio located in Torino, Italy.

We extrapolate cost data from their 2011 balance sheet, and we use their pricing data to guide

our choice for customers' inter-temporal preference parameters. Table 12.1 illustrates the values

chosen for each parameter and the criteria employed. In the absence of complete data on customer

preferences and cost structure, we consider multiple alternate choices whenever we are not fully

certain of the obtained parameters. Speci�cally, we consider �ve di�erent market size distributions,

twelve di�erent preference distributions, and �ve di�erent cost structures�the actual cost structure

of Teatro Regio, plus four additional scenarios�and we simulate all possible combinations of these

parameters, for a total of 300 scenarios examined.

Figure 12.1 (a) shows the pro�t gains of threshold discounting over the traditional approach (i.e.

the best between closure and price discrimination) for each of the 300 scenarios simulated. Pro�t

gains can be substantial, up to about 29% (average 6.1%), which is quite remarkable if one considers

that the cost of implementing threshold discounting is negligible. Figure 12.1 (b) and (c) show how

pro�t gains change as market uncertainty increases while the mean market size remains constant, for

di�erent levels of �xed costs (b) and customer preferences (c). Interestingly, pro�t gains are higher

when market uncertainty increases, suggesting that threshold discounting is particularly useful in

the presence of high market uncertainty, with the highest gains accruing when �xed costs are at an

intermediate level (since the ex-ante choice between seasonal closure and price discrimination can

turn out to be very costly, hence responsive duality is most e�ective) and when customer preferences

for the hot over the slow period are weaker (since price discrimination is more e�ective than closure,

and strategic e�ects make threshold discounting more potent at price discriminating). A �ner search

reveals that pro�t gains actually increase in market uncertainty in all 300 scenarios considered.

Figure 12.1 (d) shows the impact of market uncertainty on the pro�t of threshold discounting,

price discrimination, and closure for a representative set of parameters. Note that higher uncertainty

reduces the pro�t of both closure and price discrimination, as one would expect given the concavity

of pro�t with respect to market size realization (Figure 9.2). However, higher market uncertainty

is much less of a threat for a �rm using threshold discounting, as it reduces pro�t to a lower extent

or, contrary to intuition, it may even increase pro�t, as in the left part of (d). This is because
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Parameter Value(s) Considered Source

Capacity, k 1500 The actual capacity of Teatro Regio is 1582 seats, of

which 1530 are proper seats (the rest being stools).

We rounded down to 1500

Market size, x̃ Uniform distribution,

mean 2250 (=1.5k) and

alternate widths 900,

1500, 2100, 2700, 3300

Given the popularity of the Teatro Regio in the last

three years, we consider the average market over two

periods to be 1.5 times the single-period capacity.

We have no information on demand variability, thus

we use di�erent mean-preserving spreads to study

the impact of market uncertainty on performance

measures.

Fixed cost, cF k¿ 35, 50, 70, 90, 105 The �xed costs that could be saved by closing down

on a given night at Teatro Regio are estimated to be

about 70K¿, which comprises the per-show payroll

for external performers and the cost of utilities. We

also analyze a broader set of values in order to study

the impact of �xed costs on performance metrics of

interest.

Full price, rh ¿ 130 The price charged for prime-time performances

during the season (if we exclude the day of

inauguration).

Upper valuation, vh ¿ 140, 170 We examine two potential hot-period valuations.

Lower valuation, v ¿ 0, 40 We examine two cases, ¿ 40 the lowest price charged

at Teatro Regio for �slow� periods, ¿ 0 the extreme

case such that a customers obtains no value from

attending the event.

Inter-temporal

preferences, ṽs

Beta distribution with

support [v, vh) and shape

parameters (1, 1), (1, 2),

and (2, 1)

We examine three di�erent scenarios, going from one

in which most customers have a strong preference for

the hot period (1,2) to one in which most customers

have only a mild preference for the hot period (2,1),

with (1,1) being an intermediate case.

Unit cost, c ¿ 0 The marginal cost of issuing a ticket is negligible.

Fraction of strategic

customers, γ

10% A conservative average of the empirical �ndings in

Li et al. (2014).

Table 12.1: Parameter values employed in the numerical analysis

higher market uncertainty ampli�es the responsive duality advantage of threshold discounting, and

this e�ect may o�set the negative e�ects traditionally associated with market uncertainty.

Another worthy observation is that, under all scenarios, threshold discounting sets a higher dis-

count compared to price discrimination (42.5% vs 34.8% on average, respectively). A �rm employing
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(a) Expected Profit Gains in our scenarios (b) Average Profit Gains varying market uncertainty and fixed costs

(the grey band iden�fies profit gains lower than 0.1%)

(c) Average Profit Gains varying market uncertainty and customer preferences (d) Expected Profit as a func�on of market uncertainty

 (beta shape parameters equal to (2,1),(1,1),(1,2) from weak to strong preferences) ( T= Threshold Discoun�ng, P= Price Discrimina�on, C= Closure )
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Figure 12.1: Pro�t gains of Threshold Discounting over Traditional Approaches;
300 scenarios simulated
Pro�t gains are measured as the percentage increase in pro�t when employing thresh-

old discounting compared to the best between price discrimination and closure.

Market uncertainty refers to the standard deviation of the market size distribution, G.

Figure d: the instance represented has cF = 50000, vh = 140, v = 0, (a, b) = (1, 1).

price discrimination must be cautious with discounts because they reduce pro�t in low market states

by reducing margins without increasing sales. A �rm employing threshold discounting, on the con-

trary, o�ers the discount only when the market state is high enough and the deal becomes active, and

can therefore exploit the full demand-balancing e�ect of price reductions by o�ering deep discounts

without the fear that these will back�re in low market states. Managerially, this observation points

out that a �rm employing threshold discounting should feature higher discounts compared to a �rm

using traditional price discrimination. To the extent that higher discounts boost word-of-mouth

e�ects, our �nding hints that the advantages of threshold discounting might be even higher once

social e�ects are also accounted for.
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13. Discussion

This paper studies the operational advantages of threshold discounting schemes when used by a

capacity-constrained service provider that o�ers two vertically di�erentiated services to a random-

sized population of strategically-acting customers. We show that threshold discounting outperforms

traditional approaches on account of two phenomena: its responsive duality, which allows a �rm

to match its pricing and closing decisions to di�erent market states, and a strategic scarcity e�ect,

which improves the operational e�ectiveness of price reductions by signaling lower hot-period avail-

ability in high market states to strategic customers. Atypically, the presence of strategic customers

increases �rm pro�ts in our context. We �nd that when o�ered through an intermediary, threshold

discounting can lose its e�ectiveness if the deal speci�cations are chosen by the intermediary, due to

incentive misalignment caused by commonly used contracts. We further expand the understanding

of the design of threshold discounting schemes by showing that the optimal design involves a trans-

parent threshold, early deal disclosure, as well as restricted discounting, and we suggest an idea

for improving threshold discounting by providing focused incentives to speci�c consumer segments.

Using real-world data, we estimate that threshold discounting schemes improve pro�t by up to 29%

(6.1% on average) compared to traditional capacity management strategies.

Our model includes assumptions to avoid unnecessary complications to the analysis. We consider

customer heterogeneity only with respect to valuation for the slow period, which is rich enough to

both model customer preferences as heterogeneous and create vertical di�erentiation between the

two service periods. In the classic threshold discounting studied in Section 10, the �rm conditions

both pricing and opening decisions during the slow period on the number of subscribers. A weaker

form of threshold discounting is such that the number of subscribers merely a�ects pricing, and the

�rm is always open during both time periods. The results in this case are very similar, because when

no discount is o�ered most customers shun the slow period; speci�cally, threshold discounting still

grants the bene�cial e�ects described in Section 10 and always outperforms price discrimination,

but is less e�ective at managing �xed costs, so that when these are high enough seasonal closure

becomes a better choice. In our analysis, we assume that all customers prefer the hot-period service

to the slow-period service; that is, that service periods are vertically di�erentiated. This may not

always be the case, as some consumers may have preferences that di�er from the majority. Our

results continue to hold under more general preference functions, where each period is preferred by

a fraction of customers, except for the special case in which each period is preferred by exactly half
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of the consumer population, since in this case there is no need to rebalance demand through the

use of discounts.

Our study is a �rst step towards understanding the operational bene�t of threshold discounting

o�ers, and it could be expanded in several interesting directions that, given their richness, we believe

would deserve separate analysis. One would be to include competition, which we suspect will have

interesting e�ects. Under competition, the ability of a given �rm to redirect demand by closing

down in certain time periods should be weakened, as some demand would spill over to competitors,

while the ability to attract demand by reducing price should be strengthened, as some demand

would be stolen from competitors. Another fruitful direction of investigation may involve looking

at a multi-period choice model, which could open up the possibility for more sophisticated�and

rewarding�demand manipulation schemes.
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Part 3. Threshold Discounting O�ers: Unintended Consequences and

Incentive Con�icts

Threshold discounting o�ers�discounted price services that are valid only if at least a given number
of customers show interest in them�have been pioneered by Groupon in the multi-billion-dollar
online deals industry, and have been copied by hundreds of �rms. We study these innovative
discounting o�ers by modeling a capacity-constrained �rm servicing a random-sized population of
strategic customers in two representative time periods, a desirable hot period and a less desirable
slow period. The use of a bi-variate customer preference distribution allows us to expand previous
�ndings, to include situations in which discounts can e�ectively increase the market reached by the
�rm. We �nd that threshold discounting o�ers deliver the most value in situations in which, due to
seasonal demand, capacity is scarce in certain periods and abundant in others; however, compared
to traditional approaches (slow period discounting and closure) these o�ers deliver little value or can
even be harmful in situations with chronically low demand, or when customers exhibit high frictional
costs. When threshold discounts are o�ered through an intermediary, as often observed in practice,
we �nd that the arrangements most used in practice distort the incentives of the intermediary, which
can severely diminish the advantages of threshold discounting. Our results shed light on the possible
reasons that may have led Groupon to unexpectedly discontinue threshold discounting o�ers. We
conclude with a numerical study calibrated on data from the opera house Teatro Regio in Torino,
Italy, where we consider a number of market and customer behavior scenarios to estimate that
threshold discounting improves �rm pro�ts over traditional approaches by as much as 28% (7% on
average).
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14. Introduction

Groupon's value proposition since its foundation has been to help service providers attract cus-

tomers during o�-hours and better use their capacity. In order to lure customers into o�-hours,

Groupon has relied on deep discounts coupled with the use of an innovative discount structure, in

which the discounted deals were valid only if a certain number of customers showed interest in the

o�ering. The bene�ts of such deals, henceforth referred to as threshold discounting o�ers, have been

celebrated in the business press as a way to leverage networking e�ects and economies of scale31, and

they have more recently received attention from the academic community as well. Unexpectedly,

Groupon discontinued threshold discounting o�ers from its websites towards the end of 2012.32 Its

major competitors, one by one, followed its example in the years that followed.

The picture that emerges around threshold discounting o�ers is incomplete and controversial. In-

complete, because such o�ers have so far been studied mainly from a marketing perspective�ignoring

for example capacity constraints�and the lack of an operational angle on threshold discounting is

a serious matter, given that the daily deal industry has historically aimed at improving capacity

utilization for hundreds of thousands of service providers around the world. 33Controversial, be-

cause it is di�cult to reconcile the celebrated advantages of threshold discounting o�ers with their

progressive discontinuation on the part of the major players in the industry. Hence, two important

questions remain open. Under which circumstances do threshold discounting o�ers provide value to

a �rm from an operational perspective? And why have these o�ers been discontinued by the major

players?

Our work provides answers to both the above questions. Following Marinesi et al. (2013), we con-

sider a capacity-constrained �rm that o�ers its services to a random-sized population of strategically-

acting customers who prefer to be served on a desirable �hot� time period over a less desirable �slow�

time period (e.g., a movie theater on Saturday versus Monday evening). However, we broaden the

scope of analysis by allowing customers to be heterogeneous in their valuation for both periods.

This allows us to expand the results in Marinesi et al. (2013) by including the case in which some

customers actually prefer the slow period over the hot period, and also by capturing the market-

increase e�ect of discounting. This model allows us to provide compelling explanations for why

31See for example �Groupon's problem�, Forbes, August 2012, http://goo.gl/AjG1x
32Groupon then CEO, Andrew Mason, resigned less than one year later.
33A notable exception is Marinesi et al. (2013), which constitutes a �rst important step in the study of threshold
discounting o�ers from an operational perspective, however, more needs to be done to understand when threshold
discounting o�ers provide the highest value and when should instead be avoided.
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threshold discounting o�ers may have been discontinued. Indeed, we �nd that threshold discount-

ing o�ers outperform traditional approaches when seasonal demand coupled with �xed capacity

makes demand smoothing a priority for the �rm. However, we also �nd that under certain condi-

tions, threshold discounting provides little value, and can even reduce pro�t compared to traditional

approaches. Speci�cally, we show that demand-starved �rms, which probably constitute a big pro-

portion of the service providers featured these days in daily deals websites, derive no operational

bene�t from a threshold discounting o�er: this suggests that one reason why threshold discounting

o�ers may have been discontinued could lie in a lack of �t between the advantages that they provide

and the needs of those service �rms that were attracted by daily deal websites. We also show that

when threshold discounting is o�ered through an intermediary with high negotiating power (such as

Groupon), the intermediary has strong incentives to prefer a much lower activation threshold and

a lower price than what is in the interest of the service provider, and this may lead to substantial

reductions in the pro�t of the �rm; this result suggests that threshold discounting o�ers may have

been discontinued due a second reason, i.e., due to incentive misalignment between the powerful

intermediaries that dominate the industry and the service providers that need their services.

We use our expanded framework to test the surprising result in Marinesi et al. (2013) on the

bene�cial role of strategic customers. We �nd that some strategic customers are bene�cial for a

�rm employing threshold discounting, , however, we also �nd that strategic customers have a concave

e�ect on the �rm pro�t, and therefore too many strategic customers in the population can potentially

reduce the �rm pro�t. To the extent that customers are becoming increasingly strategic, this �nding

may also constitute another possible reason for the discontinuation of threshold discounting o�ers.

We conclude with a numerical study calibrated on real data from the opera house Teatro Regio

in Torino, Italy. We consider di�erent market size distributions, customer preference distributions,

and cost structures. In the over 200 scenarios examined, we �nd that threshold discounting increases

�rm pro�ts by as much as 28% (average 7%) over the pro�t earned with the traditional approach.

Our work makes several contributions. Taking an operational perspective on threshold discount-

ing, we provide prescriptions on when such o�ers should be used or avoided. We show that, in

contrast with the strategic customer behavior literature in operations, strategic customer behavior

is often bene�cial, but it can be harmful due to its concave impact on �rm pro�t. Our analysis also

provides compelling explanations to the reasons that may have led Groupon and its competitors

to discontinue threshold discounting o�ers, and cautions potential users of these discounts to the
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incentive con�icts inherent in the current modes of o�ering these discounts through intermediaries.

We conclude our study with a quanti�cation of the pro�t increase from o�ering threshold discounts

(up to 28%) and we �nd that these bene�ts are highest in situations characterized by high market

uncertainty.
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15. Literature Review

Our work is related with the literature on quantity discounts, strategic customers, and demand

manipulation via pricing, which can be found in Section 8. For the literature related to the role

of intermediary in the supply chain, an excellent survey can be found in Belavina and Girotra

(2012); our work departs from the existing literature on intermediaries by looking a the incentive

misalignment created by threshold discounting o�ers, providing useful directional prediction on the

terms of the deal when chosen by the intermediary, and relating it with the discontinuation of

threshold discounting o�ers on the part of Groupon.
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16. The Extended Model

In Section 9 we have studied a parsimonious model of threshold discounting, which captures two

important e�ects of discounts: reducing margins and shifting demand across periods, as character-

ized in (9.4). However, there are situations in which discounts increase demand for a service, not

just by cannibalizing sales from higher priced periods as in the base model, but also by reaching out

to customers with lower valuations. Therefore, we now expand the model from Section 9 (henceforth

referred to as the base model) by introducing a more sophisticated customer preference distribution,

which allows us to capture this increased market e�ect of discounts. The role of this extended model

is therefore twofold: testing the robustness of the �ndings from the base model and broadening their

applicability.

16.1. Preliminaries. In this section, we expand the analysis from Section 9 by considering a pop-

ulation of customers that di�er not only in their valuation for the slow period, but also in their

valuation for the hot period�speci�cally, customer valuation vector (vh, vs) is drawn from the den-

sity function h, h : [0, v̄] × [0, v̄] → R+. The hot period is hereafter de�ned as the period pre-

ferred by the majority of customers, that is, the period in which more than half of the customers

would make the highest surplus if the �rm charged the same price on both periods. Formally,
´ v̄
r

´ τh
0 h (τh, τs) dτsdτh >

´ v̄
r

´ τs
0 h (τh, τs) dτhdτs ∀r ∈ [v, v̄). We also set c = 0 for simplicity.

Next, we brie�y describe the equilibrium outcomes for the traditional approaches and for threshold

discounting, and then compare their performance, putting emphasis on the di�erences with the

results in the previous section. For the timeline of the approaches discussed, please refer to the

Figures displayed in chapter two.

16.2. The Traditional Approaches. Under closure, customers visit the �rm as long as their

valuation for the hot period is higher than the price charged by the �rm, rh. The pro�t of the �rm

is then

Πc =

+∞ˆ

0

[rh min (k, αchx)− cF ] dG (x) ,

where αch =
´ v̄
rh

´ v̄
0 h (τh, τs) dτsdτh is the fraction of the market with valuation for the hot period

higher than rh. Figure 16.1a illustrates customer visit decision as a function of the valuation vector

(vh, vs).
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visit in the hot 

period
do not visit

do not visit

visit in

the hot period

visit in the slow period

Figure 16.1: Customer equilibrium visit strategies as a function of their
valuation vector under Seasonal Closure (a) and Price Discrimination (b)
The plane displayed in the �gure is the support of the general bi-variate customer preference distri-

bution h.

Under price discrimination (Figure 16.1b) when the price vector (rh, rs) is charged, the customer's

decision depends on which of four valuation clusters they belong to: customers whose valuation is

lower than the price for both periods do not visit the �rm, customers whose valuation allow for

a positive surplus only in one period visit during that period, and customers who would make a

positive surplus in both periods visit in the slow period i� their slow period valuation vs is su�ciently

higher than their hot period valuation vh, i.e., higher than v̂p (vh; rs), obtained as the solution to

(v̂p (vh; rs)− rh)

+∞ˆ

0

min

(
1,

k

αph (rs)x

)
dGc (x) = (v̂p (vh; rs)− rs)

+∞ˆ

0

min

(
1,

k

αps (rs)x

)
dGc (x) ,

where αph (rs) =
´ v̄
rh

´ rs+(v̂p(τh;rs)−rs)(τh−rh)(v̄−rh)−1

0 h (τh, τs) dτsdτh represents the fraction of cus-

tomers visiting in the hot period, and αps (rs) =
´ v̄

0

´ v̄
rs+((v̂p(τh;rs)−rs)(τh−rh)(v̄−rh)−1)

+ h (τh, τs) dτsdτh

represents the fraction of customers visiting in the slow period.

The four valuation clusters can be rearranged so as to form three groups: hot period visitors (αph),

slow period visitors (αps), and non-visitors (αp0). The fact that not all customers visit the �rm is

an important di�erence with our analysis in Section 9, which has implications for the �rm's pricing

decision, as we discuss next.
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do not subscribe

do not visit

do not subscribe;

visit in hot period

subscribe;

deal on: visit in slow

deal off: no visit

subscribe;

deal on: visit in slow

deal off: visit in hot

Figure 16.2: Customer equilibrium subscription and visit strate-
gies as a function of their valuation vector under Threshold Discounting
The plane displayed in the �gure is the support of the general bi-variate customer prefer-

ence distribution h.

The e�ect of a discount θ on the pro�t of a �rm employing price discrimination can be meaning-

fully grouped into three terms:

d

dθ
Πp (θ) =

+∞ˆ

0

dαph(θ)

dθ
rh

(
1
x<k(αph(θ))

−1−1
x<k(αps(θ))

−1 (1−θ)
)
xdG(x)

︸ ︷︷ ︸
Π
′
p−op(θ), operational (±)

+

(16.1) +

[
−

+∞ˆ

0

min

(
k, αps(θ)x

)
dG(x)

︸ ︷︷ ︸
Π
′
p−mg(θ),margin (−)

−
kαps(θ)−1ˆ

0

(rh (1−θ)) dα
p
0(θ)

dθ
xdG(x)

︸ ︷︷ ︸
Π
′
p−im(θ), increasedmarket (+)

]
,

where αpi (θ),i ∈ {h, s, 0} is short notation for αpi (rs (θ)).

In line with the analysis of the base model, a higher discount in the slow period shifts customers

from the hot to the slow period, which is captured in the �rst component, Π
′
p−op (θ);34 it also reduces

the margin earned in that period, which is captured in the second component, Π
′
p−mg (θ). Unlike our

analysis in Section 9, however, an increase in the discount o�ered in the slow period also increases

the fraction of the market that can make a positive surplus in the slow period, α0, thereby increasing

34We henceforth assume that the service periods are substitute goods, so that a discount in the slow period attracts

customers from the hot period�i.e., in this case
dα
p
h

(θ)

dθ
> 0.
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sales in that period�captured in the third component, Π
′
p−im (θ). To summarize, a discount induces

a demand shift towards the slow period (�rst component) which works in addition to the classic

lower margin-higher sales tradeo� (last two components). Unlike our analysis in Section 9, the hot

period is not always the period with the most visitors: in some cases, the �rm may be better o�

discounting the slow period so much that the increase in sales makes it busier than the hot period:

at that discount level, the operational e�ect Π
′
p−op (θ) negatively a�ects pro�t because it makes

demand across periods more unevenly distributed, thus increasing the mismatch between supply

and demand�yet the increase in slow period sales more than compensate for it.

The pro�t for a �rm employing price discrimination is given by

(16.2) Πp =

+∞ˆ

0

[
rh min

(
k, αph (rps)x

)
+ rps min (k, αps (rps)x)− 2cF

]
dG (x) ,

where rps = arg maxrs Πp (rs) subject to rs ≤ rh.

16.3. Threshold Discounting. Figure 16.2 illustrates customer subscription and visit strategies

as a function of the valuation vector (vh, vs). Similarly to price discrimination, customers can be

grouped into four valuation clusters. Customers in the �rst cluster are those who make a positive

surplus neither during the hot period nor during the discounted slow period, so they do not subscribe

and do not visit (αt0); customers in the second cluster are those who make a positive surplus only in

the discounted slow period, and they subscribe to the deal, visit during the slow period if the deal

is active, and they do not visit otherwise; customers in the third cluster are those who can make

a positive surplus only in the hot period, and they do not subscribe and visit in the hot period

regardless of the outcome of the deal; and �nally, customers who can make a positive surplus both

in the hot and in the discounted slow period act to maximize their expected surplus. Speci�cally,

if their slow period valuation is su�ciently higher than their hot period valuation, i.e., higher than

v̂t (vh; rs, n), they act as customers in the second cluster, otherwise they act as customers in the third

cluster, with v̂t (vh; rs, n) being the slow period valuation that makes a customer with valuation vh

indi�erent between the two options, which is the solution to:

(vh−rh)

+∞ˆ

n/αts(rs,n)

min

(
1,

k

αth(rs, n)x

)
dGc(x)=(v̂t(vh; rs, n)−rs)

+∞ˆ

n/αts(rs,n)

min

(
1,

k

αts(rs, n)x

)
dGc (x) ,
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where αph (rs, n) τh represents the fraction of customers who visit during the hot period when

the deal is active, and αps (rps , n) represents the fraction of customers who, conditional on having

subscribed, visit during the slow period when the deal is active, and are de�ned in SectionC.1.

The strategic scarcity e�ect studied in Section 10.2 continues to hold in the current model, that is,

conditional on the deal being on, customers learn that the market size is higher than anticipated,

leading to a larger fraction of customers visiting during the slower period under threshold discount-

ing compared to price discrimination when the same discount is o�ered (SectionC.6, Lemma 10).

Graphically, this is re�ected in the fact that the slope of the border between αth and αts is more

distant from the 45 degree line compared to the border between αph and α
p
s when the same discount

is o�ered.

The e�ect of a higher discount on the pro�t of threshold discounting can be decoupled into an

operational e�ect, a margin e�ect, and an increased market e�ect similarly to what is done in (16.1)

for the case of price discrimination, plus a threshold e�ect, and can be found in C.2.

The pro�t for a �rm employing threshold discounting is

(16.3)

Πt =

nt

αts(rts,nt)ˆ

0

[rh min(k, αchx)−cF ] dG(x)+

+∞ˆ

nt

αts(rts,nt)

[
rh min

(
k, αth

(
rts, n

t
)
x
)
+rts min

(
k, αts

(
rts, n

t
)
x
)
−2cF

]
dG(x) ,

where
(
rts, n

t
)

= maxrs,n Πt (rs, n) subject to rs < rh, n > 0 is the pro�t maximizing decision

under threshold discounting. For the details of the equilibrium analysis, see SectionC.1.

16.4. Comparison of Threshold Discounting with the Traditional Approaches.

Theorem 14. Consider a market size distribution G with support over R+. Then threshold dis-

counting outperforms closure, i.e. Πt > Πc.

The comparison between threshold discounting and closure con�rms the result obtained in the

base model, because the driver of the advantage of threshold discounting are still in place: as in our

previous analysis, threshold discounting can exploit the variability in the market to its advantage,

expanding capacity and smoothing demand when the market size realization is high enough, and

saving on �xed costs and avoiding sales cannibalization when the market size is low. The additional

sales accrued via the discount in the slow period often times augment the threshold discounting

advantage by allowing the �rm to more easily break even in the slow period.
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On the other hand, the comparison between threshold discounting and price discrimination is

more elaborate once the increased market size e�ect of a discount is taken into account.

Theorem 15. Consider a market size distribution G with support over R+. Then threshold dis-

counting outperforms price discrimination, that is, Πt > Πp, if

(16.4) Π
′
p−op (θp) > 0,

and either cF > 0 or αch−α
p
h (θp) > (1− θp)αps (θp) , where θp is de�ned as θp = arg maxθ Πp (rs (θ))

subject to θ ≥ 0.

The above theorem provides su�cient conditions for threshold discounting to outperform price

discrimination. The second condition requires that �xed costs are positive, or else that under price

discrimination the pro�t lost due to sales cannibalization o�sets the pro�t gained thanks to the

increased market size e�ect. This ensures that neither of the traditional approaches dominates

the other under all market size realizations. This is arguably very likely to hold, hence the result

of the theorem bears predominantly on condition (16.4): this condition is insightful, and states

that under price discrimination, in equilibrium, the operational (marginal) e�ect of a discount

de�ned in (16.1) is positive. This condition is important because it relates to the decision of a �rm

employing price discrimination, thereby providing information on the conditions under which the

�rm operates. When this condition holds, the discount set by the �rm under price discrimination

has a positive operational impact on pro�t, formally
´ θp

0 Π
′
p−op (θ) dθ > 0, which means that the

�rm bene�ts from the demand-shift induced by the discount (SectionC.6, Lemma 11); furthermore,

this condition implies that the hot period is busier than the slow period and subject to capacity

shortages (SectionC.6, Lemma 12); �nally, it also implies that the sum of the margin and increased

market (marginal) e�ects on pro�t is negative, which means that the �rm pushes the discount up to

a level that sacri�ces on margin/sales in order to gain on the operational side. In short, condition

(16.4) characterizes those situations in which, due to seasonality of demand and capacity shortages,

demand smoothing is a primary driver both for the �rm's pricing decision and for its pro�tability.

Under these conditions, threshold discounting outperforms price discrimination.

Theorem 15 suggests that threshold discounting is no longer guaranteed to outperform price dis-

crimination. This happens because the extended model also captures situations in which discounts

are used primarily as a way to reach out to low valuation customers, and in such situations, the
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operational advantages of threshold discounting may lose their edge. It is therefore of interest to

isolate situations in which threshold discounting delivers no value to the �rm, or may even be harm-

ful. To this aim, we now consider the case of a bounded support for the market size distribution G,

and consequently restrict the �rm employing threshold discounting to pick a meaningful threshold,

i.e., a threshold such that the deal is active and inactive with some positive probability.

Theorem 16. Consider a market size distribution G with open bounded support (x, x̄) ⊂ R+; then

• Price discrimination strictly outperforms threshold discounting if x̄ ≤ k and cF < c̄F , that

is, Πp > Πt; and

• Closure strictly outperforms threshold discounting if x̄ ≤ k and cF > c̆F , that is, Πc > Πt,

where c̄F = rh
(
αph (rps)− αch

)
x+ rpsα

p
s (rps)x > 0 and c̆F = rh

(
αph (rps)− αch

)
x̄+ rpsα

p
s (rps) x̄, and r

p
s

is de�ned as in (16.2).

The above theorem provides conditions for each of the traditional approaches (price discrimination

and closure) to outperform threshold discounting. When a �rm is demand-starved, that is, when the

�rm is always going to have spare capacity in both service periods, the �rm has no need for demand

smoothing, hence the strategic scarcity e�ect provides no value. When, in addition, �xed costs are

low (high) enough, opening during both periods and setting the appropriate price is always better

(worse) than closing, hence the responsive duality advantage also no longer provides value. More

speci�cally, when �xed costs are low enough, the �rm's optimal decision is simply to o�er the same

discount, one that optimally trades o� higher margins and higher sales, independently from the

market size, since no capacity shortages occur. Vice versa, when �xed costs are high enough, the

�rm optimal decision is to close down, independently�again�from the market size. In these cases,

simple approaches such as price discrimination and closure provide�respectively�the �rm with just

what is needed, while any market-responsive approach that implements di�erent pricing/opening

decisions in di�erent market outcomes, as threshold discounting needs to do in order to ensure

customer participation, is going to reduce the �rm pro�t. It follows that in these cases threshold

discounting performs worse than the most appropriate between the traditional approaches.

Note that we are assuming that a �rm running a threshold discounting o�er does not incur any

additional costs. However, threshold discounting arguably requires the �rm to undertake costly

activities and investments, such as creating and maintaining a website, paying for server space,

employing sales sta�, IT support, etc. Hence, for threshold discounting to be a pro�table alternative
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to traditional approaches, the pro�t gap relative to the traditional approaches must not only be

just positive, but also cover at least the extra costs necessary to run a threshold discounting o�er.

The above results show that threshold discounting is not a one-size-�ts-all approach, and in some

cases a discounted deal without any threshold or simply closing the �rm in slow periods can be a

better choice, speci�cally when a �rm is demand starved and has low or high costs of operations,

respectively. Conditions in Theorem 16 are likely to hold for young businesses and struggling busi-

nesses alike. These categories probably represent a large portion of the �rms featured on daily

deals websites. Hence, one reason for why threshold discounting o�ers have been discontinued by

many players in the industry could have been the lack of �t between the (operational) bene�t as-

sociated with threshold discounting o�ers and the need of those (demand-starved) �rms that seek

to be featured on daily deal websites. Nonetheless, whether discontinuing threshold discounting

was a savvy long-term decision remains questionable, as long-term value is less likely to come from

demand-starved businesses, and is more likely to come from healthier businesses with conspicu-

ous seasonal demand�exactly the type of businesses that would bene�t the most from threshold

discounting o�ers.

Taken together, Theorems 15 and 16 expand the results from our analysis in Section 9 by ac-

counting for the increased market e�ect of discounts and for situations characterized by low market

prospects. Our new results con�rm that responsive duality and strategic scarcity are the drivers of

the superiority of threshold discounting o�ers; in particular, these two advantages make threshold

discounting superior to seasonal closure when the market size exhibits enough variability, and make

it superior also to price discrimination in settings where, in addition, discounts are primarily used

as a way to smooth demand. On the other hand, we have also shown that threshold discounting

often fails to deliver value and can even hurt the �rm pro�ts for demand-starved �rms.

86



www.manaraa.com

17. Additional Analysis

17.1. The Impact of Strategic Customer Behavior on the Firm Pro�t. In this section, we

extend our analysis to consider a mixed population in which a fraction γ of customers are strategic,

and the remaining fraction 1− γ are non-strategic, in that they do not account for the strategy of

other customers. Consistent with Marinesi et al. (2013), a non-strategic customer simply compares

the hot period surplus vh − rh with the slow period surplus vs − rs, and visits in period that yields

the higher surplus if positive, or else does not visit; if she plans on visiting in the slow period, she

also subscribes to the deal.

In our discussion following theorem 15 we observed that when discounts can reach new portions

of the market, additional demand smoothing is not necessarily bene�cial to the �rm. In such situa-

tions, therefore, strategic customers could be harmful to the �rm, due to their augmented strategic

response to slow period discounts upon learning that the deal is active. The pro�t expression for

the �rm is similar to (10.3) and therefore has been relegated to the Appendix (C.3).

Theorem 17. Assume that γ = 0, and also that

(1) Πp (θ) and Πt (θ, n) are unimodal in θ,∀n;

(2) Π
′
p−mg (θ) + Π

′
p−im (θ) is unimodal in θ; and

(3) Π
′
p−op (θp) > 0,

where θp = maxθ Πp (rs (θ)). Then
d

dγ
Πt|γ=0 > 0.

When the conditions in the above theorem hold, the pro�t of a �rm employing threshold dis-

counting with a population of non-strategic customers increases if at least some of the customers are

strategic. In other words, under these conditions, having some strategic customers in the population

leads to higher pro�t compared to having none.

The �rst two conditions in the theorem are regularity conditions. The �rst states that the

optimal discount level under price discrimination and threshold discounting is given by the �rst

order condition. The second requires the sum of the margin and the increased market e�ects

under price discrimination to be unimodal in the discount level θ. The third condition is the same

condition used in theorem 15, and characterizes settings in which demand smoothing is a priority

for the �rm, and threshold discounting outperforms both traditional approaches. Hence, those in

which threshold discounting is best placed to operate, i.e., in which (16.4) holds, are often the
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same conditions in which (some) strategic customers are bene�cial to the �rm. It is possible that a

high fraction of strategic customers may increase or reduce the �rm pro�t because, as commented

earlier, an excessive level of demand smoothing may hurt pro�ts (in particular, one can show that

demand smoothing has a concave impact on pro�t at any price point, see SectionC.12, Lemma 15).

This issue is investigated in the numerical study (Section 18). Overall, Theorem 17 complements

our result in Section 10.3, reinforcing our �nding on the surprisingly bene�cial nature of strategic

customers for a �rm employing threshold discounting.

One may wonder how strong the above regularity conditions are. The answer is: not too strong,

because increasing the discount charged by the �rm tends to have a concave e�ect on each of the

three components in (16.1). More speci�cally, the increased market e�ect of discount on pro�t for

instance tends to be concave because increasing sales has progressively less value as the discount

increases; similarly, the operational e�ect of discount on pro�t (condition 1, second part) is always

quasi-concave (SectionC.6, Lemma 11) and tends to be concave because, as commented earlier, the

impact of demand smoothing on pro�t is concave. The margin e�ect of discount on pro�t is always

concave, since for higher discounts the margin is lost on a higher amount of sales. For a formal

analysis on when these conditions hold, see Lemma 13 in the Appendix.

17.2. Mediated Threshold Discounting. In the most popular implementations of threshold dis-

counting, the service provider o�ers threshold discounts through an intermediary (such as Groupon),

which features the deal on its website in exchange for a commission. The main advantage of going

through a third party is probably to reach a larger number of customers: in this case, threshold

discounting can generate word-of-mouth e�ects, as Jing and Xie (2011) analyze. From the opera-

tional perspective of our study, however, an intermediary provides no clear advantage to the �rm,

though the need for an intermediary may still arise as a way for a �rm to obtain the necessary

visibility and reach customers, possibly because customers are not aware of the �rm's business. If

threshold discounting is o�ered through an intermediary, decision rights are a key consideration:

who decides on the characteristics of the deal (the activation threshold and the discounted price),

the service provider or the intermediary? If it is the service provider, then the intermediary is simply

an extra cost, and threshold discounting is preferable to traditional approaches only insofar as the

advantages outweigh the intermediation costs. In this case our analysis above applies with the cost

of intermediation subtracted from the �rm's pro�t.
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In practice, however, the intermediary has a large role in shaping the characteristics of the deal,

because of the inexperience of the service provider, for example, or because of the intermediary's

high bargaining power. In these cases, it is imperative to learn how the incentives of the interme-

diary di�er from the those of the �rm. Based on our interactions with management of daily deals

businesses, the contract arrangement most often used in practice, possibly due to its simplicity,

observability and objectivity, is such that the intermediary earns a percentage of the revenues from

those customers that subscribed to the o�er through its website. In this case, the pro�t for the

service provider (subscript t-med) and the intermediary (subscript IN) for any deal (rs, n) and

positive intermediation fee η are then given by

Πt−med(rs, n|η)=

+∞ˆ

n/αts(rs,n)

[
rh min

(
k, αth (rs, n)x

)
+(1−η) rs min

(
k, αts (rs, n)x

)
−2cF

]
dG (x)+

+

n/αts(rs,n)ˆ

0

[rh min(k, αchx)−cF ] dG (x)

ΠIN (rs, n|η) , η

+∞ˆ

n/αts(rs,n)

rs min
(
k, αts (rs, n)x

)
dG (x) .

Theorem 18. Under mediated threshold discounting

• the intermediary chooses a lower slow period price than the �rm would, for any given acti-

vation threshold n, i.e. rINs (n) < rts (n) ∀n > 0;

• the intermediary chooses a lower activation threshold than the �rm would, for any given slow

period price r, if γ ≤ γ̄ (rs), i.e. ∀rs∃γ̄ (rs) ∈ (0, 1] : γ ≤ γ̄ (rs)⇒ nINs (rs) < nt (rs); and

• the �rm earns a lower pro�t, even when η → 0+,

where rINs (n) = arg maxrs ΠIN (rs, n|η) s.t. rs ≤ rh, n
IN
s (rs) = arg maxn ΠIN (rs, n|η) s.t. n > 0,

rts(n)=arg maxrs Πt(rs, n) s.t. rs ≤ rh, and nt(rs)=arg maxn Πt(rs, n) s.t. n > 0.

The pro�t of the intermediary di�ers from the pro�t of the service provider in three important

ways. First, the intermediary earns pro�t only on customers who purchase during the slow period;

second, the intermediary does not incur any additional �xed cost if the service provider opens also in

the slow period; and third, the intermediary earns pro�t only when the deal is active. The �rst two

di�erences provide strong incentives for the intermediary to charge a lower slow-period price than

the service provider would. One reason is that the intermediary has much higher incentives to shift
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demand to the slow period�for he earns nothing when customers purchase on the hot day�and this

is best achieved by lowering the price. Another reason is that the intermediary is willing to open

during the slow period as long as this brings one cent more in revenues, while the service provider

is wary of the �xed costs that such decision brings along.

The second and third di�erences imply instead that, compared to the service provider, the inter-

mediary prefers a deal that is much more likely to be active, meaning a lower activation threshold.

The reason is that the intermediary takes all the bene�ts of an active deal�higher revenues during

the slow period�without getting most of the costs associated with it�costs of opening, since these are

incurred by the service provider, and cost due to the cannibalization of the hot period sales by the

slow period, since the intermediary gains nothing from selling during the hot period. The only cost

for the intermediary in lowering the activation threshold comes from reducing the strategic scarcity

e�ect�a lower threshold sends a weaker signal to strategic customers upon deal activation�which

results in lower sales in the slow period.35 However, this cost is often negligible. Too see why, one

must consider the interaction between the two e�ects in the Theorem 18: once the intermediary

lowers the price during the slow period, demand will further shift to the hot period; this demand

shift weakens the strategic scarcity e�ect, which is based on the di�erence in availability between the

two periods, and in how signaling a high market size via the deal activation makes such a di�erence

more prominent in the eyes of the customers. Once the additional price reduction favored by the

intermediary has weakened the strategic scarcity e�ect, lowering the threshold is going to have little

consequences on the slow period sales.

In summary, the intermediary is in many cases better o� with a lower activation threshold and

a lower price, both of which undermine the advantages of threshold discounting for the service

provider. In this case responsive duality is severely diminished, both because the deal would be

activated in market states in which it would be best not to activate the deal, and because an

excessive fraction of demand would be redirected to the slow period, reducing the operational

bene�t of price discriminating between periods. Further, the strategic scarcity e�ect would also be

less than optimal on account of the lower threshold. Our numerical study strongly supports both

of the above predictions, with the intermediary choosing a lower price and a much lower threshold

(often almost equal to zero) than the �rm would (see Section 18). This logic indicates that the

deal preferred by the intermediary, one with a very low�if not zero�threshold and a deep discount,

35When the hot period is busier than the slow period; otherwise, reducing the strategic e�ect increases sales in the
slow period, and the intermediary always prefers a lower threshold than the service provider does.
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could substantially reduce the pro�t of the service provider due to incentives misalignment, that is,

over and above the fee charged by the intermediary. Our observations of numerous Groupon-like

websites suggest that the characteristics of many online discounted deals appear consistent with the

above logic. We therefore conjecture that threshold discounts work well when administered directly

by the service provider, but not when administered by an intermediary.

17.3. Transaction Cost of Subscription. Our analysis of threshold discounting so far assumes

that customers incur a negligible (positive but arbitrarily small) e�ort cost when subscribing to a

threshold discounting o�er. Suppose instead that customers incur a non-negligible transaction cost

φ to subscribe to a threshold discounting o�er (see SectionC.9 for the equilibrium conditions). How

would this change the performance of such o�ers?

Theorem 19. When customers incur a non-negligible transaction cost φ to subscribe to a threshold

discounting o�er, in comparison to a case with negligible subscription costs

• Total sales are lower at any price point, i.e., αth (r, n)+αts (r, n) > αth (r, n;φ, η)+αts (r, n;φ, η)

∀r, n, φ, η > 0,

• A larger fraction of visiting customers is served during the hot period relative to the slow pe-

riod at any price point, i.e. αth (r, n)
(
αts (r, n)

)−1
< αth (r, n;φ, η)

(
αts (r, n;φ, η)

)−1 ∀r, n, φ, η >

0, and

• Pro�t is lower;

as φ → 0+, threshold discounting with negligible and with non-negligible transaction cost become

outcome equivalent, that is, result in the same sales and pro�t in each period for every market size

realization.

When customers incur a transaction cost to subscribe to a threshold discounting o�er, fewer

customers will subscribe at any given price point, due to the additional transactional cost that they

will have to incur; as a consequence, fewer customers will be able to obtain the discount and therefore

visit the �rm during the slow period. As a result, total sales are lower because a higher fraction

of the market is unable to access the �rm services. In terms of expected surplus, the existence of

a transaction cost weighs on customers as an increase in price would, therefore shifting demand

towards the hot period. In short, the existence of transaction costs lowers sales and reduces the

ability of threshold discounting to shift demand towards the slow period. As a result, pro�t for the

�rm is also reduced. As transaction costs become smaller, this model converges to the model with
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negligible transaction costs studied in Section 16.3. To the extent that customer transaction costs

are becoming lower and lower, thanks to widespread di�usion of smartphones and one-touch apps,

the assumption of negligible subscription cost is a good approximation, and threshold discounting

o�ers are going to provide even more value in the future.
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18. Numerical Study

In this section, we present the results of a numerical study that helps us illustrate the advantages

of threshold discounting and complement our theoretical results. We consider the usage of threshold

discounting at a potential service provider, the opera house Teatro Regio located in Torino, Italy.

We extrapolate cost data from their 2013 balance sheet, and we use their pricing data to guide

our choice for customers' inter-temporal preference parameters. Table 18.1 illustrates the values

chosen for each parameter and the criteria employed. In the absence of complete data on customer

preferences, we use the simplest distribution that results in a seasonal demand pattern while keeping

computation simple�a triangular distribution�and we model both a strategic and a non-strategic

population of customers. As per the cost structure, we consider alternate choices to study its

e�ect on the performance measures of interest. Speci�cally, we consider nine di�erent market size

distributions, eight di�erent preference distributions, and three di�erent cost structures�the actual

cost structure of Teatro Regio, plus two additional cases�and we simulate all possible combinations

of these parameters, for a total of 216 scenarios examined.

Figure 18.1 (a) shows the pro�t gains of threshold discounting over the traditional approaches

(i.e., the best between closure and price discrimination) for each of the 216 scenarios simulated. In

16% of the scenarios, threshold discounting performs worse than the traditional approaches, but the

di�erence in performance is small, with an average loss of 0.2%, up to a maximum loss of 0.4%. In

the 84% remaining scenarios, threshold discounting leads to pro�t gains that are often substantial,

up to about 28% (average 7%). The di�erence in performance across the 216 scenarios can be partly

explained using the dilemma score, de�ned as −|Πp−Πc| (Πp + Πc)
−1. This score has a correlation

of 0.62 with pro�t gains, and it roughly captures the service provider's dilemma of having to choose

between price discrimination and closure in the face of market size uncertainty: the closest are

the pro�t of the two approaches in expectation, the higher is the dilemma score, and the higher is

(ceteris paribus) also the ex-post pro�t foregone by choosing the least performing approach, thanks

to the single crossing property of the ex-post pro�t function proven in Lemma 2 (that this property

holds also in the extended model it is easy to show). In essence, the dilemma score captures the

responsive duality advantage of threshold discounting, which allows the �rm to indirectly respond

to the unobserved market size. Figure 18.1 (b) compares pro�t gains with and without strategic

customers: strategic customers are in 89.8% of the cases bene�cial for a �rm employing threshold

discounting, improving pro�t by a modest 0.4% on average, up to 4.3%; this may seem like a small
93



www.manaraa.com

improvement, but it comes as a free lunch, without any further cost or intervention on the part of

the �rm. In the remaining 10.2% of cases, the impact of strategic customers is negative, but hardly

noticeable.

Parameter Value(s) Considered Source

Capacity, k 1500 The actual capacity of Teatro Regio is 1582 seats, of

which 1530 are proper seats (the rest being stools).

We rounded down to 1500

Market size, x̃ Uniform distribution:

mean 3000, 4000, and

5000; and widths 2000,

4000, and 6000, for a total

of 9 distributions

Given the popularity of the Teatro Regio in the last

years, we consider the average potential market size

to be between 2 and 3.33 times the single-period ca-

pacity. We have no information on demand variabil-

ity, thus we use di�erent mean-preserving spreads to

study the impact of market uncertainty on perfor-

mance metrics of interest.

Fixed cost, cF k¿ 30, 50, 70 The �xed costs that could be saved by closing down

on a given night at Teatro Regio are estimated to

be about 50K¿, which comprises the per-show pay-

roll for external performers and the cost of utilities.

We also consider higher and lower values in order to

capture a broad range of situations and study the

impact of �xed costs on the performance metrics of

interest.

Full price, rh ¿ 130 The price charged for prime-time performances

during the season (if we exclude the day of

inauguration).

Upper valuation, v̄ ¿ 180, 210 We examine two potential upper-bound valuations.

Lower valuation, v ¿ 0, 40 We examine two cases, ¿ 40 the lowest price charged

at Teatro Regio for �slow� periods, ¿ 0 the extreme

case such that a customers obtains no value from

attending the event.

Customer valuation

density function, h

h (vh, vs)equal to:

(v̄ − v)
2
/2 if vh ≥ vs

0 otherwise

We consider the case of a triangular distribution,

since this provides a simple closed form to compute

the fraction of visitors in each period as a function

of the threshold valuation v̂ de�ned in (??).

Unit cost, c ¿ 0 The marginal cost of issuing a ticket is negligible.

Fraction of strategic

customers, γ

0, 1 We consider the two extreme cases of a strategic pop-

ulation and of a non-strategic population

Intermediation fee, η 50% The usual fee charged by intermediaries in the indus-

try (see for example http://goo.gl/J4yNuH)

Table 18.1: Parameter values employed in the numerical study
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Figure 18.1 (c) shows how pro�t gains change as market uncertainty increases while the mean

market size remains constant, for di�erent levels of �xed costs. Interestingly, pro�t gains are higher

when market uncertainty increases, suggesting that threshold discounting is particularly useful in

the presence of high market uncertainty. A �ner search reveals that pro�t gains actually increase in

market uncertainty in all 216 scenarios considered. The fact that pro�t gains increase in the �xed

costs is not a general property, and is due to the fact that price discrimination earns higher pro�ts

than closure in more than 60% of the scenarios simulated, hence higher �xed costs within our pool of

scenarios boost the responsive duality advantage by improving the service provider dilemma score,

thus increasing pro�t gains. Figure 18.1 (d) shows the impact of market uncertainty on the pro�t

of threshold discounting, price discrimination, and closure for a representative set of parameters.

Note that higher uncertainty reduces the pro�t of both closure and price discrimination, as one

would expect given the concavity of pro�t with respect to market size realization. However, higher

market uncertainty is much less of a threat for a �rm using threshold discounting, as it reduces

pro�t to a lower extent or, contrary to intuition, it may even increase pro�t, as in the left part

of (d). This is because higher market uncertainty ampli�es the responsive duality advantage of

threshold discounting, and this e�ect may o�set the negative e�ects traditionally associated with

market uncertainty.

Figure 18.2 plots the equilibrium slow period price and the activation threshold under mediated

threshold discounting when the intermediary chooses the terms of the deal, and compares the

intermediary's preferred deal (black) with the deal that maximizes the pro�t of the �rm (dark gray).

In all the 216 scenarios simulated, the intermediary chooses a much lower threshold compared to

what would be optimal for the �rm, resulting in the deal being active 99% of the times or more.

This provides strong support for why daily deal websites may have decided to discontinue threshold

discounting. In all the scenarios, the intermediary also chooses a lower price than what would be

optimal for the �rm (8% lower on average). Both for the activation threshold and the price, the

supply chain optimal decision (pale grey) almost consistently stands between the individualistic

choice of the �rm and of the intermediary, as evidence that their incentives are not only di�erent,

but also divergent with respect to the common optimal.

Finally, one may wonder whether threshold discounting could improve pro�ts compared to more

sophisticated capacity management techniques, such as advance selling. Since the comparison proves

intractable analytically, we tested it using our pool of scenarios. We �nd that threshold discounting
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(a) Expected Profit Gains in our cases (b) Expected Profit Gains with strategic and non-strategic customers
 ( black=profit ga ins , grey do!ed=di lemma score )  ( black=strategic popula"on, grey=non-strategic popula"on )

ordered by increasing percentage profit gains ordered by increasing profit gains for the non-strategic case

(c) Average Profit Gains varying market uncertainty and fixed costs (d) Expected Profit as a func"on of market uncertainty
 ( fixed costs  30k-70k, darker bars  for higher uncerta inty ) ( T= Threshold Disocun"ng, P= Price Discrimina"on, C= Closure )
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Pro�t gains are measured as the percentage (a, c) or absolute (b) increase in pro�t when employing threshold

discounting compared to the best between price discrimination and closure. Market uncertainty refers to the

standard deviation of the market size density function, g. Figure d: the scenario represented has cF = 70000,

v̄ = 210, v = 0, γ = 1.

Figure 18.1: Pro�t gains of Threshold Discounting over Traditional Approaches;
216 Scenarios Simulated

(a) Mediated Threshold Discoun�ng: op�mal slow period price (b) Mediated Threshold Discoun�ng: probability of deal being ac�ve

 ( pa le grey=SC op�mum, dark grey=firm decides , black=intermediary decides  )  ( pa le grey=SC op�mum, dark grey=firm decides , black=intermediary decides  )

ordered by increasing firm price ordered by increasing Prob. of an ac�ve deal, when the firm chooses the deal
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For the activation threshold we report the probability that the deal is active instead of the actual threshold in

order to better compare all the scenarios even when di�erent demand distributions are employed.

Figure 18.2: Comparison between the equilibrium pricing (left) and activation
threshold (right) decisions in Mediated Threshold Discounting, when the choice is
made by the service provider and by the intermediary, across the 216 scenarios
simulated
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outperforms advance selling 72% of the times, with average pro�t improvement of 7.1%. This is

higher when customers are strategic (8%) compared to when they are not (6.3%). The reason is that

advance selling removes rationing risk on customers (assuming the �rm does not overbook), thus

removing all strategic elements to customer visit decision�which we have shown to be in many cases

bene�cial to the �rm. Hence, strategic customer behavior under threshold discounting accounts on

average for about 1.5-2% of the pro�t, and improves pro�t gains with respect to advance selling by

27% on average (from 6.3% to 8%).
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19. Discussion

This paper expands and complements our �ndings from chapter two. We show that threshold

discounting o�ers outperform traditional approaches, and are therefore best employed, when a �rm

experiences frequent capacity shortages in peak periods due to seasonal demand, while they should

not be used by �rms that experience consistently low demand, like new ventures or struggling

businesses. Furthermore, we �nd that threshold discounting o�ers are less e�ective when customers

exhibit high transaction costs, or when they are o�ered through a powerful intermediary that can

impose the deal speci�cations, leading in many cases to deals that are active too often and that o�er

too high a discount compared to what would be optimal for the service provider. The surprising

result in Marinesi et al. (2013) regarding the bene�cial role of customers has been mostly con�rmed

by our analysis, but the concavity of the e�ect suggests that it may be more bene�cial for the �rm

to have a less than fully strategic population.

Interestingly, our analysis also provides two plausible explanations for why Groupon and its major

competitors may have discontinued threshold discounting o�ers: a �rst one based on the lack of

�t between the operational bene�t of threshold discounting and the needs of the (demand-starved)

�rms featured in daily deal websites, and a second one based on the misalignment of incentives along

the supply chain, as mentioned above. These two explanations may be two consecutive chapters

from the same story: the high discounts and low thresholds used by daily deal websites due to

incentive misalignment may have progressively discouraged �rms with substantial seasonal demand

from running threshold discounting deals, making more room for more demand-starved �rms that

had no excess demand to smooth�at which point, discontinuing threshold discounting became just

the most logical consequence. Finally, using real-world data, we estimate that threshold discounting

schemes, if employed correctly, can improve pro�t by up to 28% (7% on average) compared to

traditional capacity management strategies.
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Appendix A. Proofs for Part 1

A.1. Additional results for Section 3.

Lemma 5. In a voting system with purchasing discount to advise on development decisions, all customers

vote according to the same strategy, where they cast a vote i� their valuation is higher than a threshold.

Suppose that at equilibrium k di�erent groups of customers use k di�erent voting strategies V
(1..k)
D , repre-

senting the set of valuations for which a customer of a given group casts a vote. Then, there exists a valuation

realization x′ such that at least 1 but no more than k − 1 groups vote, and the �rm develops the product.

For each of these voting customers to be better o� voting, it must be δDPD + cv < x′ and PD (1− δD) > cv.

If so, each of the other non-voting customers is better o� voting. Hence, at equilibrium, customers must

employ the same voting strategy, and the �rm develops the product i� all of them vote. Given that for every

x > δDPD + cv customers are collectively better o� voting than not voting (and the �rm makes pro�t), their

Pareto-dominant strategy is of a threshold-type.

Lemma 6. In a voting system with purchasing discounts to advise on development decisions, expected sales

are always lower than in a traditional no-voting system.

From the quasi-concavity of ΠN (PN ) it follows that F̄ (P )−f (P ) (P − c) > 0 ⇐⇒ P < P ∗N , which implies

that δDPD ≤ P ∗N−cv⇒ F̄ (δDPD + cv)−f (δDPD + cv) (δDPD − c− cF ) > 0; it follows that δ∗DP
∗
D+cv > P ∗N ,

hence F̄ (δ∗DP
∗
D + cv) < F̄ (P ∗N ).

A.2. Proof of Lemma1. Let v ∈ {0, 1} represent the voting decision taken by a customer, where 1 stands

for voting. Starting from the last action of the game, the equilibrium buying strategy (when the product is

developed) is to buy i� x− PD + v (1− δD)PD ≥ 0.

The �rm's development strategy is Dνo∗
D (δD, PD | x̄∗D) = 1 i� πνoD (δD, PD | x̄∗D) ≥ 0, that is, to develop

the product if and only if the expected pro�t-to-go is positive, where the expected subgame pro�ts are given by

π1
D (δD, PD | x̄∗D) = δDPD − c− cF

π0
D (δD, PD | x̄∗D) =

[
F (x̄∗D)− F (PD)

F̄ (x̄∗D)

]+

(PD − c)− cF
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with [y]
+

= max (0, y). Any deviation by this strategy is obviously going to harm the �rm. Customer voting

strategy x̄∗D (δD, PD | Dνo∗
D ) at equilibrium requires that

(A.1) ∀x≥ x̄∗D



(x−δDPD)D1∗
D (δD,PD)−cv≥0

and

PD (1−δD)D1∗
D (δD,PD)−cv≥0

∀x<x̄∗D



(x−δDPD)D0∗
D (δD, PD)− cv<0

or

PD (1−δD)D0∗
D (δD,PD)−cv<0

.

Both conditions in the former set must hold for voters to be better o� voting, and at least one condition

in the latter set must hold for non-voters to be better o� not voting. These imply that x̄∗D ≥ δDPD + cv,

and also that D1∗
D (δD, PD | x̄∗D) = 1 and D0∗

D (δD, PD | x̄∗D) = 0. From these last two conditions, since

πνoD (δD, PD | x̄∗D) is increasing in x̄∗D, we obtain that it must be x̄D,1 ≤ x̄∗D < x̄D,0, where x̄D,1(δD, PD) =

min
{
x̄D : π1

D(δD, PD | x̄D)=1
}
, x̄D,0 (δD, PD) = max

{
x̄D : π0

D (δD, PD | x̄D) = 0
}
. Hence, the set of po-

tential equilibrium voting strategies XD for any given initial announcement of the �rm (δD, PD) is given

by

XD (δD, PD) = [max {x̄D,1 (δD, PD) , δDPD + cv} , x̄D,0 (δD, PD))

.

It can be shown that customer surplus is the highest for the lowest threshold, which is either δDPD + cv

or x̄D,1. Since the highest pro�t π1 (δD, PD | x̄D) is already achieved for x̄D = δDPD, it follows that x̄D,1 <

δDPD + cv, hence the optimal voting strategy is x̄∗D = δDPD + cv, the �rm's ex-ante pro�t function is

ΠD (δD, PD) = F̄ (δDPD + cv) (δDPD − c− cF ), which is quasi-concave in δDPD, and the rest follows.

A.3. Proof of Theorem 1. For Point 1, using the Envelope Theorem, we can write d
dcΠ

∗
N = ∂

∂cΠ
∗
N =

−F̄ (P ∗N ) < −F̄ (δ∗DP
∗
D + cv) = ∂

∂cΠ
∗
D = d

dcΠ
∗
D where the inequality comes from Lemma 6, and the re-

sult is proven since d
d cF

(Π∗D −Π∗N ) ≥ 0. Point 2 comes from d
daΠ∗N = (b+a−c)(a−b+c)

8a2 and d
daΠ∗D =

(b+a−c−cv−cF )(a−b+c+cv+cF )
8a2 with simple algebraic manipulations.

A.4. Proof of Theorem 2. Suppose an informative equilibrium exists, and let x− be the lowest valuation

for which customers vote. The payo� of a customer with valuation x− is then x−−δ∗PP 1∗
P (δ∗P )−cv, which is

always negative because P 1∗
P (δ∗P ) ≥ x−

δ∗P
: hence this cannot be an equilibrium because not voting is a strictly

better action for her than voting.
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A.5. Proof of Theorem 3. The buying strategy is only a function of game history, i.e. to buy i� x −

P νoB + v (1− δD)P νoB ≥ 0. The optimal pricing decisions, once the voting outcome νo is observed, are

P 1∗
B

(
δB , P̄B | x̄∗B

)
=

argmax
P 1
B

[ F̄ (δBP 1
B

)
F̄ (x̄∗B)

]1

F̄ (x̄∗B)
(
δBP

1
B − c

)P̄B

P 0∗
B

(
δB , P̄B | x̄∗B

)
=

argmax
P 0
B

[F (x̄∗B)− F
(
P 0
B

)
F (x̄∗B)

]1

0

(
P 0
B − c

)P̄B

where [y]
b
a = max (a,min (b, y)). From the above it follows that P 0

B ≤ P 1
B. For customer voting strategy x̄∗B

to be an equilibrium strategy, the following must hold:

(A.2) ∀x ≥ x̄∗B



(
x−δBP 1∗

B

)
−cv ≥ 0

and

(
x−δBP 1∗

B

)
−cv ≥

(
x−P 1∗

B

)
∀x < x̄∗B



(
x−δBP 0∗

B

)
−cv < 0

or

0 <
(
x−δBP 0∗

B

)
−cv <

(
x−P 0∗

B

)
.

When both conditions on the left hold, a customer that observes a valuation greater than x̄B and votes gets

an overall positive surplus buying the product (�rst inequality), and this will be higher than what she would

get by not voting (second inequality), given that all other customers vote - hence she is better o� voting.

When at least one of the conditions on the right holds, a customers that observes a valuation lower than x̄B

and votes gets either an overall negative surplus from buying the product (�rst inequality), or a surplus that

is lower than what she could get by not voting and buying the product (second inequality), given that all other

customers are not voting - hence she is better o� not voting.

Both conditions in the former set must hold for voters to be better o� voting, and at least one condition in

the latter set must hold for non-voters to be better o� not voting. Note also that since x̄∗B ≥ δBP̄B +cv, when

customers vote any price lower than x̄∗B/δB would result in the same sales but lower margin than x̄∗B/δB,

hence P 1∗
B = P̄B. For a voting strategy x̄∗B to be incentive-compatible then, we need

(A.3) x̄∗B − δBP̄B − cv ≥ 0 and P 0∗
B (x̄∗B) (1− δB) < cv,

hence, customer subgame-perfect voting strategy x̄∗B
(
δB , P̄B

)
after a �rm initial announcement

(
δB , P̄B

)
is the consumer surplus-maximizing strategy among those voting strategies that satisfy (A.3), i.e. which

belong to the set

XB =

[
δBP̄B + cv, P

0∗−1

B

(
cv

1− δB

)]
.
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The �rm's initial move
(
δ∗B ,P̄

∗
B

)
maximizes the expected pro�t

arg max
δB ,P̄B

[
F̄
(
x̄∗B
(
δB ,P̄B

))(
δBP̄B−c

)
+
[
F
(
x̄∗B
(
δB ,P̄B

))
−F

(
P 0∗
B

(
x̄∗B
(
δB ,P̄B

)))](
P 0∗
B

(
x̄∗B
(
δB ,P̄B

))
−c
)]

s.t. δB ≤ 1− cv
P̄B

where the constraint comes from (A.2). The �rm develops the product i� the resulting expected pro�t is

positive.

The optimization problem that leads to the �rm equilibrium �rst move
(
δ∗B ,P̄

∗
B

)
can be further simpli�ed

into

argmax
δB ,P̄B

[
F̄
(
δBP̄B+cv

)(
δBP̄B−c

)
+
[
F
(
δBP̄B+cv

)
−F

(
P 0∗
B

(
δBP̄B+cv

))](
P 0∗
B

(
δBP̄B+cv

)
−c
)]

s.t. P 0∗
B

(
δBP̄B+cv

)
=

cv
1− δB

once we take into account the ability of the �rm to set the desired threshold, as shown in Section A.7 (see

below).

A.6. Proof of Theorem 4. Since the pricing decision is postponed, ρνo is a scale factor between prices for

the di�erent voting outcomes, and we can �x ρ0 = 1 without loss of generality. The optimal buying strategy is

to buy i� x ≥ x̂νoR , with x̂νoR = P νoR (1 + v (ρνo − 1)). A viable threshold voting strategy for customers x̄R must

be such that customers vote i� x ≤ x̄R; in fact in this system voting is more attractive when valuation is low

than when it is high. It follows that, in equilibrium, we'll have at most four possible scenarios, depending on

customer valuation: when it's lower than x̂1
R they will vote and not buy, when it's in [x̂1

R, x̄R) they will vote

and buy, when it's in [x̄R, x̂
0
R) they will not vote and not buy, and when it's at least x̂0

R they will not vote

and buy. In order to make deviations not pro�table in each case, we must then require

(A.4)



x̂1
R − P 1

R ≤ 0 and r − cv ≥ 0

x̂1
R − P 1

R ≥ 0

r − cv ≤ (ρ1 − 1)P 0
R and x̂

0
R − P 0

R ≥ r − cv

r − cv ≤ 0

=⇒



x̂1
R = P 1

R

r = cv

ρ1 ≥ 1

x̂0
R ≥ P 0

R

,

where the optimal pricing strategies are

P 1∗
R = arg max

P

([
F̄ (P )− F̄ (x̄∗R)

F (x̄∗R)

]1

0

(P − c)

)
and P 0∗

R = arg max
P

([
F̄ (P )

F̄ (x̄∗R)

]1

(P − c)

)
.

110



www.manaraa.com

The �rst and the fourth conditions in (A.4) are consistent with the ex-post optimal pricing conditions,

since x̂1
R = P 1

R ≤ x̄R and x̂0
R ≥ P 0

R ≥ x̄R. The second and third conditions can be easily complied by the �rm

in the initial announcement, and pose no constraints on x̄∗R. Hence, there are many voting thresholds x̄R

leading to an informative equilibrium, and the one that arises is the one that maximizes customer surplus.

As for the initial announcement, it must be r = cv, while ρ1 > 1 insures that customers are strictly better

o� not voting when their valuation is higher than x̄∗R.

A.7. Pro�t reformulation in Section 4.3 ( and Proof for Theorem 6. Let's start from Equation

(4.3). In a voting system with bounded pricing, the �rm can induce any target voting threshold x̄t by ap-

propriately choosing
(
δB , P̄B

)
, under the condition that cv < P 0

B (x̄t), which is satis�ed for all thresholds of

interest as long as cv is relatively small compared to product value. To do this, it must be δBP̄B = x̄t − cv

and P 0∗
B (x̄t) = cv

1−δB so that XB is a singleton. From cv < P 0∗
B (x̄t) < x̄t,

d
dδB

cv
1−δB > 0 and not-

ing that for the highest incentive-compatible discount δ̄B (x̄t) = x̄t−cv
x̄t

we have cv
1−δB = x̄t, it follows

that ∀x̄t∃δ ∈
[
0, δ̄B

]
: P 0∗

B (x̄t) = cv
1−δB , and P̄B is consequently adjusted. Also, P̄B (x̄t, δB) is lowest

for δ̄B and P̄B
(
x̄t, δ̄B

)
= x̄t > P 0∗

B (x̄t) so we're done. Note that restricting the �rm choice of ini-

tial announcement
(
δB , P̄B

)
to those for which XB is a singleton does not reduce the �rm pro�t! In

fact, take any δB , P̄B such that x̄∗B
(
δB , P̄B

)
> δBP̄B + cv. Then the announcement

(
δ′B , P̄

′
B

)
such that

x̄∗B
(
δ′B , P̄

′
B

)
= δ′BP̄

′
B + cv = x̄∗B

(
δB , P̄B

)
leads to a higher pro�t, being,

ΠB

(
δB ,P̄B

)
=

= F̄
(
x̄∗B
(
δB ,P̄B

))(
δBP̄B − c

)
+
[
F
(
x̄∗B
(
δB ,P̄B

))
−F

(
P 0∗
B

(
x̄∗B
(
δB ,P̄B

)))](
P 0∗
B

(
x̄∗B
(
δB ,P̄B

))
−c
)
<

< F̄
(
x̄∗B
(
δ′B ,P̄

′
B

))(
δ′B , P̄

′
B−c

)
+
[
F
(
x̄∗B
(
δ′B ,P̄

′
B

))
−F

(
P 0∗
B

(
x̄∗B
(
δ′B ,P̄

′
B

)))](
P 0∗
B

(
x̄∗B
(
δ′B ,P̄

′
B

))
−c
)

=

=ΠB

(
δ′B ,P̄

′
B

)
.

Equation (4.2) for bounded pricing is explained by noting that x̄∗B = argmax
P

F̄1 (P ) (P − c) always. Sup-

pose not, i.e. argmax
P

F̄1 (P ) (P − c) = x̄∗B + ∆ > x̄∗B. Then the �rm could choose
(
δ′B , P̄

′
B

)
such that

δ′BP̄
′
B + cv = x̄∗B + ∆ and cv

1−δ′B
= P 0∗

B (x̄∗B + ∆), resulting in ΠB

(
δ′B , P̄

′
B

)
> Π∗B. In fact

F̄ (x̄∗B + ∆)
(
δ′BP̄

′
B − c

)
< F̄ (x̄∗B + ∆)

(
δ∗BP̄

∗
B − c

)
[
F (x̄∗B + ∆)− F

(
P 0∗
B (x̄∗B + ∆)

)] (
P 0∗
B (x̄∗B + ∆)− c

)
<
[
F (x̄∗B)− F

(
P 0∗
B (x̄∗B)

)] (
P 0∗
B (x̄∗B)− c

)
.

Hence it must be x̄∗B = argmax
P
F̄1 (P ) (P − c), and we can decompose F̄ (x̄∗B)

(
δ∗BP̄

∗
B − c

)
into F̄ (x̄∗B) (x̄∗B − c)−

F̄ (x̄∗B) cv and the rest follows.

As for a reverse voting system, Equation (4.4) is the Pareto-dominant voting strategy for the equilibria

found in Section A.6, while the pro�t reformulation in (4.2) follows by noting that P 0∗
R = x̄∗R. Suppose not,
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Chester�eld Sofa Table Lamp

Figure A.1: Products employed for our numerical study in Section 18

i.e. P 0∗
R = x̄∗R + ∆ > x̄∗R. Then customers could coordinate on the threshold x̄∗R + ∆ and increase their

surplus, since this would increase the ex-ante surplus in the low contingency while not decreasing the ex-ante

surplus in the high contingency, that is

[
F̄
(
P 1∗
R (x̄∗R + ∆)

)
− F̄ (x̄∗R + ∆)

] (
x− P 1∗

R (x̄∗R + ∆)
)
≥
[
F̄
(
P 1∗
R (x̄∗R)

)
− F̄ (x̄∗R)

] (
x− P 1∗

R (x̄∗R)
)

(
x− P 0∗

R (x̄∗R + ∆)
)
· F̄ (x̄∗R + ∆) = (x− x̄∗R −∆) · F̄ (x̄∗R + ∆) =

(
x− P 0∗

R (x̄∗R)
)
· F̄
(
P 0∗
R (x̄∗R)

)
with the pro�t being strictly higher if S is convex. The rest follows. Note that the ex-post optimal pricing

decisions do not depend on the system employed per se, but only on the posterior information, hence the use

of the common pricing functions P ∗h and P ∗l . Theorem 6 follows from the de�nitions of PIj and CIj, and

from Equations (4.3) and (4.4).

A.8. Proof of Theorem 5. The �rst part follows from the de�nitions of CIB and CIR. As for the second

part, f(x) di�erentiable implies that ΠB (x̄) is also di�erentiable, with

(A.5)
d

dx̄
ΠB=−f(x̄)(x̄−cv−c)+F̄ (x̄)+

[
f(x̄)−f(P ∗0 (x̄))

d

dx̄
P ∗0 (x̄)

]
(P ∗0 (x̄)−c)+

+[F (x̄)−F (P ∗0 (x̄))]
d

dx̄
P ∗0 (x̄) .

It can be shown that the subgame pro�t after a low contingency π0 (P0 | x̄) = [F (x̄)− F (P0)] (P0 − c) is

quasi-concave in P0 because f has non-decreasing hazard rate, hence from the f.o.c. we obtain [F (x̄)− F (P ∗0 )] =

f (P ∗0 ) (P ∗0 − c), leading to d
dx̄ΠB = F̄ (x̄) + f (x̄) (P ∗0 (x̄)− x̄+ cv) by substitution in (A.5).

Consider now the shifted distribution g (x+ k) = f (x), with k > 0. Let P g∗0 (x̄) be the optimal subgame

price under the low contingency and Πg
B (x̄) the �rm pro�t under the shifted distribution g. Then we have[

d
dx̄Πg

B

]
x̄+k

= Ḡ (x̄+ k) + g (x̄+ k)
(
P g∗0 (x̄)− x̄− k + cv

)
= F̄ (x̄) + f (x̄)

(
P g∗0 (x̄)− x̄− k + cv

)
and

(A.6)

[
d

dx̄
ΠB

]
x̄

−
[
d

dx̄
Πg
B

]
x̄+k

= f (x̄)
(
P ∗0 (x̄) + k − P g∗0 (x̄)

)
≥ 0.
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The above is never negative because P ∗0 (x̄) + k ≥ P g∗0 (x̄) since d
dP π

0 (P | x̄) ≥ d
dP π

0,g (P + k | x̄+ k)

for every P . Inequalities are strict when f (P0) > 0 hence S convex is a su�cient condition. Let x̄f =

argmax
x̄

ΠB (x̄), x̄g = argmax
x̄

Πg
B (x̄). From (A.6) we have that ∀x̄ ≥ x̄f , ΠB

(
x̄f
)
≥ ΠB (x̄)⇒ Πg

B

(
x̄f + k

)
≥

ΠB (x̄+ k), hence x̄g ≤ x̄f + k, which implies F̄
(
x̄f
)
≤ Ḡ (x̄g). The argument is identical for k < 0, the

conclusion being reversed.

113



www.manaraa.com



www.manaraa.com

Appendix B. Proofs and Additional Results for Part 2

The Traditional Approach.

B.1. Equilibrium outcome. Under seasonal closure, the service provider o�ers his services only in the hot

period; hence, customers visit in that period and the �rm's expected pro�t is given by (??).

Under price discrimination, the �rm charges rs during the slow period. Take any price rs charged in

the slow period, and let the visit strategy of all customers except customer i be represented by the set

V−i (rs) ⊆ [v, vh), so that a customer j 6= i visits in the slow period if vs ∈ V−i (rs) and visits in the hot

period otherwise. Then, the expected incremental surplus of customer i with valuation vs,i from visiting in

the slow period rather than in the hot period is given by

(vh − rh)

+∞ˆ

0

min

(
1,

k

α̂px

)
dGc − (vs,i − rs)

+∞ˆ

0

min

(
1,

k

(1− α̂p)x

)
dGc(x) ,

where α̂p = 1−
´
V−i(rs) dH is the fraction of the population that visits in the hot period. Note that the

above expression is increasing in vs,i, hence customer i visit strategy is of a threshold type, such that she

visits during the slow period i� her valuation for the slow period is high enough. It follows that all customers

in equilibrium use a threshold subscription strategy. Given that customers are all homogenous ex-ante, their

threshold visit strategy will be to visit in the slow period i� vs > v̂p (rs), with v̂p (rs) being the valuation for

which a customer is indi�erent between the two periods, given by

(vh − rh)

+∞ˆ

0

min

(
1,

k

H (v̂p (rs))x

)
dGc (x)− (v̂p (rs)− rs)

+∞ˆ

0

min

(
1,

k

H̄ (v̂p (rs))x

)
dGc(x) = 0.

The visit strategy v̂p (rs) is unique because the LHS of the above expression is strictly decreasing in v̂p.

The �rm optimal price choice is then the one that maximizes expected pro�t. In equilibrium we have that

(B.1) Π∗p = arg max
rs

(rh − c)
+∞ˆ

0

min (k,H (v̂p (rs))x) dG(x)+(rs − c)
+∞ˆ

0

min
(
k, H̄ (v̂p (rs))x

)
dG(x)−2cF .

B.2. Additional lemma.

Lemma 7. Under price discrimination, the expected margin of the �rm Mp increases in the price rs, and

the expected capacity utilization Up is maximized for rs = H−1
(
v̂−1
t (1/2)

)
, where Mp and Up are de�ned as

Mp(rs)=

´ +∞
0

[
min (k,H(v̂p(rs))x)(rh−c) + min

(
k,
(
H̄(v̂p(rs))

)
x
)
(rs−c)

]
dG(x)´ +∞

0

[
min (k,H(v̂p(rs))x) + min

(
k,
(
H̄(v̂p(rs))

)
x
)]

dG(x)

Up(rs)=

+∞ˆ

0

[
min

(
1,k−1H(v̂p(rs))x

)
+min

(
1,k−1H̄(v̂p(rs))x

)]
dG(x)
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For Mp, it is convenient to de�ne

η (rs) =

´ +∞
0

min (H(v̂p (rs))x, k) dG(x)´ +∞
0

min (H(v̂p (rs))x, k) dG(x) +
´ +∞

0
min

(
H̄(v̂p (rs))x, k

)
dG(x)

as the (expected) fraction of sales served during the hot period; then we have Mp (rs) = η (rh − c) +

(1− η) (rs − c) and d
drs
Mp = η′ (rs) (rh − rs) + (1− η), and the result follows by noting that η′ (rs) > 0

because d
drs
H(v̂p (rs)) > 0, and d

drs
min

(
xH̄(v̂p (rs)) , k

)
≤ 0, strictly if xH̄(v̂p (rs)) ≤ k.

For Up, it su�ces to note that the integrand function min
(
1,k−1H(v̂p(rs))x

)
+min

(
1,k−1H̄(v̂p(rs))x

)
is

increasing in rs if H(v̂p(rs)) <
1
2 and decreasing in rs if H(v̂p(rs)) >

1
2 for every x (strictly so i� H̄(v̂p(rs))x >

k and H(v̂p(rs))x > k respectively).

B.3. Lemma 2. Let πp (rps , x) = (rh − c) min (k, xH (v̂p (rps))) + (rps − c) min
(
k, xH̄ (v̂p (rps))

)
− 2cF and

πc (x) = (rh − c) min (k, x) − cF be the pro�t earned by the service provider when market size realiza-

tion is equal to x and he opens or close on the hot period, respectively, with rps being the solution to

(B.1). The single crossing of the two functions follows by noting that πp (rps , 0) = −2cF < −cF = πc (0),

d
dxπc(x) > ∂

∂xπp (rps , x) > 0 for x < k, d
dxπc(x) = 0 < ∂

∂xπp (rps , x) for x ∈
(
k, k (xH(v̂p(r

p
s)))
−1
)
, and that

limx→+∞ πp (rps , x) = k (rh + rps − 2c) − 2cF > k (rh − c) − cF = limx→+∞ πc (x). This also implies that

market realization x◦ for which πp(r
p
s , x
◦) = πc(x

◦) must be higher than k (Figure 9.2). d
dcF

x◦ > 0 and

d
dcx
◦ > 0 come from πp (rps , x)− πc (x) being strictly decreasing in cF , and also in c ∀x > k.

Threshold discounting.

B.4. Equilibrium outcome in the Customer Continuation Game Γ̂ (rs, n).

B.4.1. Proving threshold visit and subscription strategies. We analyze customer strategies proceeding back-

ward, beginning from the visit strategy. If the deal is not active, the �rm closes on the slow period and

everyone visits in the hot period since vh > rh and the probability of being served is always positive. If the

deal is active, customer i visits in the period in which she expects to make the higher surplus. Speci�cally, let

vs,i be the slow period valuation of customer i, and let si = 1 if customer i previously subscribed and si = 0

otherwise; let the visit strategy of customer i be represented by the set of valuations for which customer i

visits in the slow period, νi = νi (rs, n, si), and let ν−i (rs, n, s−i) be the vector containing the visit strategies

of all customers except i. Let also σ−i be the vector of subscription strategies σj (rs, n) of all customers

except i, such that customer j subscribes to the deal i� vs,j ∈ σj (rs, n). Then vs,i ∈ νi i�

(B.2)

(vs,i−si rs−(1−si) rh)
1

Pr (x ∈ A)

ˆ

A

min
(

1, k (ᾱv(ν−i(rs, n, s−i))x)
−1
)

dGc (x)>
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>(vh−rh)
1

Pr (x ∈ A)

ˆ

A

min
(

1, k (αv(ν−i(rs, n, s−i))x)
−1
)

dGc (x) ,

where αv (ν−i) is the fraction of customers that visit in the hot period given their visit strategy ν−i,

ᾱv (ν−i) = 1−αv (ν−i), and where A =
{
x : x

´
σ−i(rs,n)

dH (v) ≥ n
}
is the set of all market states in which

the deal is active, that is, when at least n customers subscribed. Note that the LHS of (B.2) is increasing in

vs,i and the RHS does not depend on vs,i, implying that all customers use the same threshold visit strategy

in which they visit in the slow period i� vs > v̂t (rs, n) if they subscribed and i� vs > v̂nt (rs, n) if they did

not subscribe, with v̂t (rs, n) < v̂nt (rs, n) being the slow-period valuation of the customer that is indi�erent

between the two periods in the two cases. Note that information incompleteness in the game is represented

by the uncertain market state x, and the belief about x is computed for each player at each information set

according to Bayes' rule, taking into account the strategy of the other players.

As for the subscription strategy, a customer subscribes i� doing so increases her expected future payo�,

i.e. i�

(B.3)

Pr(x∈A)

(vs,i−rs)ˆ
A

min

(
1,

k

ᾱv(v̂t, v̂nt, σ−i)x

)
dGc (x)−(vh−rh)

ˆ

A

min

(
1,

k

αv(v̂t, v̂nt, σ−i)x

)
dGc (x)

>0.

If Pr (x ∈ A) > 0, then the expected gain from subscribing is strictly increasing in vs,i, hence subscribing

is also a threshold strategy; if instead Pr (x ∈ A) = 0, then the deal is never active, meaning that customers

never subscribe, which is also a threshold strategy with threshold vh.

B.4.2. Multiple equilibria in the Customers Continuation Game. Equilibrium strategies for a Perfect Bayesian

Equilibrium are de�ned by the behavior strategy combination (v̂t, v̂nv, v̂sv), i.e. by a vector specifying cus-

tomer threshold strategies, where v̂t is a subscription strategy that speci�es the minimum slow-period valua-

tion above which a customer subscribes, and v̂nv (v̂sv) is the visit strategy that, contingent on the deal being

active, speci�es the minimum slow-period valuation above which a customer visits in the slow period, given

that she previously did not subscribe (did subscribe) to the deal. No visit strategy needs to be speci�ed in

case the deal is not active, since all customers visit in the hot period.

We divide equilibria of this game into two types. Type I equilibria are those where customers sub-

scribe with some positive probability, i.e. v̂It < vh, and type II equilibria are those where customers never

subscribe, i.e. v̂IIt = vh. Speci�cally, type II equilibria are characterized by the behavior strategy combi-

nation
(
v̂IIt , v̂

II
nv, v̂

II
sv

)
such that v̂IIt = vh, with the other strategies having no impact since in equilibrium

the deal is never active. We rule out these equilibria because they do not exist in the more general case,

in which the population of customers comprises of both strategic and myopic customers, as studied in
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Section 17.1. Furthermore, type II equilibria are Pareto dominated by type I equilibria: this will be shown

in subsubsection B.4.6, once customer strategy for type I equilibria has been appropriately de�ned.

B.4.3. Type I equilibria. Henceforth, we'll refer to strategies of type I equilibria without the superscript I.

In type I equilibria, the visit strategy when a customer has subscribed, v̂sv, is given by

(B.4)

(v̂sv−rs)
+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (ᾱt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x) − (vh−rh)

+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (αt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x) = 0,

where αt(v̂t, v̂nv, v̂sv) = H̄ (max (v̂t, v̂sv)) + [H (v̂t)−H (v̂nv)]
+
is the fraction of customers visiting in the

hot period, and ,ᾱt = 1− αt. The visit strategy when a customer has not previously subscribed is given by

(v̂nv−rh)

+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (ᾱt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x)− (vh−rh)

+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (αt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x) = 0,

which implies that v̂nv > v̂sv. The subscription strategy is given by

(B.5)

(v̂t−rs)
+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (ᾱt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x) − (vh−rh)

+∞ˆ

nH̄(v̂t)
−1

min
(

1, k (αt(v̂t, v̂nv, v̂sv)x)
−1
)

dGc(x) = 0.

Equations (B.4) and (B.5) are the same mathematical form, yet v̂sv and v̂t may in principle di�er, since

such equations may allow for multiple solutions. However, this is never the case. In fact, note that the case

v̂t < v̂sv is not possible, because v̂nv > v̂sv ⇒ v̂nv > v̂t implies that αt = αt (v̂sv, v̂nv), hence if (B.4) holds

then the LHS of (B.5) is negative, leading to a contradiction. The case v̂t > v̂sv is also not possible since it

implies αt = αt (v̂t, v̂nv) hence if (B.5) holds then the LHS of (B.4) is negative, leading to a contradiction. It

follows that v̂t = v̂sv, i.e. when the deal is active, customers visit in the slow period i� they have previously

subscribed. Hence, in a type I equilibrium subscribers will always visit in the slow period and non-subscribers

will always visit in the hot period, and the subscription threshold v̂t fully characterizes customer behavior.

B.4.4. Uniqueness of type I equilibria in the Customer Continuation Game when rs ≥ r̄. Equation (B.5) can

be conveniently rewritten as

(B.6)
v̂t − rs
vh − rh

=

´ +∞
nH̄(v̂t)

−1 min
(

1, k (H (v̂t)x)
−1
)

dGc(x)

´ +∞
nH̄(v̂t)

−1 min
(

1, k
(
H̄ (v̂t)x

)−1
)

dGc(x)
.

Let the LHS and RHS of (B.6) be henceforth referred to as LHSt (v̂t, rs) and RHSt (v̂t, n). Then equation

(B.6) has a unique solution v̂t for every rs ≥ r̄ and every n, because LHSt (v̂t, rs) strictly increases in v̂t and

RHSt (v̂t, n) weakly decreases in v̂t. To see why, �rst note that all integrands at the numerator of RHSt (v̂t, n)
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decrease in v̂t and all integrands at the denominator ofRHSt (v̂t, n) increase in v̂t. It follows thatRHSt (v̂t, n)

decreases in v̂t because nH̄ (v̂t)
−1

increases in v̂t and min(1, k (H (v̂t)x)
−1

) min(1, k
(
H̄ (v̂t)x

)−1
)−1 decreases

in x, due to the property that given a1...an, b1...bn > 0 such that ai/bi ≥ ai+1/bi+1∀i = 1..n − 1 we have

that
∑n
n1
aj/

∑n
n1
bj ≥

∑n
n2
aj/

∑n
n2
bj ∀n1 < n2 ≤ n. Hence, when rs ≥ r̄, there exists a unique type I

equilibrium in the customer continuation game that follows, characterized by (B.6).

B.4.5. Optimal �rm announcement. The optimal �rm announcement (rts, n
t) is given by

(B.7) rts, n
t = arg max

rs,n

nH̄(v̂t(rs,n))−1ˆ

0

[(rh−c)min(x, k)−cF ] dG(x)+

+

+∞ˆ

nH̄(v̂t(rs,n))−1

[
(rh−c)min(xH(v̂t(rs, n)),k)+(rs−c)min

(
xH̄(v̂t(rs, n)),k

)
−2cF

]
dG(x) .

We now show that the �rm is always better o� announcing a discounted price rts > r̄, where r̄ = H−1
(

1
2

)
−

vh + rh. Let LHSt (v̂t, rs) and RHSt (v̂t, n) be the LHS and RHS of (B.6), as before. First, note that

LHSt
(
H−1

(
1
2

)
, r̄
)

= 1, and also that rts ≥ r̄ ⇒ v̂t (rts, n) ≥ H−1
(

1
2

)
∀n. In fact, suppose not, then

v̂t < H−1
(

1
2

)
⇒ RHSt (v̂t, n) ≥ 1 and LHSt (v̂t, r

t
s) < 1 which violates (B.6). Now suppose that the

solution to (B.7) is such that rts < r̄. Then the service provider can earn a higher pro�t by choosing the deal

(r̄, n̄t) where n̄t = 1
2

nt

H̄(v̂t(r
t
s,n

t))
, in fact

Πt

(
rts, n

t
)

=

nt

H̄(v̂t(r
t
s,n

t))ˆ

0

[(rh−c) min(x, k)−cF ] dG(x)+

+

+∞ˆ

nt

H̄(v̂t(r
t
s,n

t))

[
(rh−c) min

(
H
(
v̂
(
rts, n

t
))
x, k
)
+
(
rts−c

)
min

(
H̄
(
v̂
(
rts, n

t
))
x, k
)
−2cF

]
dG(x)≤

≤

nt

H̄(v̂t(r
t
s,n

t))ˆ

0

[(rh−c) min(x,k)−cF ] dG(x) +

+∞ˆ

nt

H̄(v̂t(r
t
s,n

t))

[
(rh−c) min

(x
2
,k
)

+(r̄−c) min
(x

2
,k
)
−2cF

]
dG(x)=Πt(r̄,n̄t) ,

where the inequality holds because when the deal is active both capacity utilization and average margin

are higher for any market size realization equal to or above nt/H̄ (v̂t (rts, n
t)), and the last equality holds

because n̄t/H̄ (v̂t (r̄, n̄t)) = 2n̄t = nt/H̄ (v̂t (rts, n
t)). The result is then proven by contradiction.

B.4.6. Pareto Dominance of Type I equilibria over Type II. Let CSI (vs) and CSII (vs) be the expected

surplus for a customer with slow-period valuation vs under type I and type II equilibria, respectively. Let
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αt = H (v̂t (rs, n)) and ᾱt = 1− αt. Then for any initial announcement (rs, n) we have

CSI (vs; vs > v̂t (rs, n)) = (vh − rh)

nᾱ−1
tˆ

0

min
(
1, k x−1

)
dGc (x) + (vs − rs)

+∞ˆ

nᾱ−1
t

min
(

1, k (ᾱtx)
−1
)

dGc (x) >

= (vh−rh)

nᾱ−1
tˆ

0

min
(
1, k x−1

)
dGc (x) + (vh−rh)

+∞ˆ

nᾱ−1
t

min
(

1, k (αtx)
−1
)

dGc (x) ≥

> (vh − rh)

+∞ˆ

0

min
(
1, k x−1

)
dGc (x) = CSII (vs; vs > v̂t (rs, n)) ,

where the �rst inequality comes from (B.6), and

CSI (vs; vs ≤ v̂t (rs, n)) = (vh − rh)

nᾱ−1
tˆ

0

min
(
1, k x−1

)
dGc (x) + (vh − rh)

+∞ˆ

nᾱ−1
t

min
(

1, k (αtx)
−1
)

dGc (x) ≥

≥ (vh − rh)

+∞ˆ

0

min
(
1, k x−1

)
dGc (x) = CSII (vs; vs ≤ v̂t (rs, n)) .

B.5. Lemma 3. See subsubsection B.4.3.

B.6. Lemma 4. See subsubsection B.4.5.

B.7. Theorem 7. The proof follows two steps.

B.7.1. Step 1: The strategic scarcity e�ect. First, we show that

(B.8) H (v̂t (r, n)) < H (v̂p (r)) if r ≥ r̄ and n > 0.

To this aim, we compare customer strategy in (B.6) with the visit strategy under price discrimination,

rewritten in a similar way here below,

(B.9)
v̂p − rs
vh − rh

=

´ +∞
0

min
(

1, k (H (v̂p)x)
−1
)

dGc(x)

´ +∞
0

min
(

1, k
(
H̄ (v̂p)x

)−1
)

dGc(x)
,

and let the LHS and RHS be referred to as LHSp (v̂p, rs) and RHSp (v̂p), respectively. The condition

r ≥ r̄ implies v̂t (r, n) ≥ H−1
(

1
2

)
, which implies that min (1, k/(H (v̂t)x)) /min

(
1, k/(H̄ (v̂t)x)

)
decreases in

x, which in turns implies that
´ +∞
y

min (1, k/(H (v̂t)x)) dG(x) /
´ +∞
y

min
(
1, k/(H̄ (v̂t)x)

)
dG(x) decreases

in y, as discussed in subsubsection B.4.4. Then RHSp (v̂) > RHSt (v̂, n) ∀n > 0, and by noting that

LHSp (r) = LHSt (r), it follows that v̂t (r) < v̂p (r), hence the result.
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B.7.2. Step 2: Threshold Discounting outperforms the Traditional Approach. Suppose that Πp > Πc. Now,

we show that the previous property implies that Πt (rts, n
t) > Πp (rps). In fact,

Πp (rps)=

+∞ˆ

0

[
(rh−c) min (xH(v̂p(r

p
s)) , k)+(rps−c) min

(
xH̄
(
v̂p
(
rts
))
, k
)]

dG(x)−2cF <

<

x◦ˆ

0

[(rh−c)min(x, k)−cF ] dG(x)+

+∞ˆ

x◦

[
(rh−c)min(xH(v̂p(r

p
s)),k)+(rps−c)min

(
xH̄
(
v̂p
(
rts
))
,k
)
−2cF

]
dG(x)<

<

x◦ˆ

0

[(rh−c)min(x, k)−cF ] dG(x)+

+∞ˆ

x◦

[
(rh−c)min(xH(v̂t(r

p
s ,n)),k)+(rps−c)min

(
xH̄(v̂t(r

p
s ,n)),k

)
−2cF

]
dG(x)=

=Πt(r
p
s , n)≤Πt

(
rts, n

t
)
,

where the �rst inequality follows from the de�nition of x◦, the second because H(v̂t(r
p
s , n)) ∈

[
1
2 , H(v̂p(r

p
s))
]

implies higher expected sales and higher average margin for all market realizations equal or higher than x◦,

and where n = x◦H̄ (v̂t(r
p
s , n)) always admits a solution, as shown in Lemma 8 below.

If instead Πp < Πc, it is easy to check that Πt(r
p
s , n) > Πc. The result is then proven because Πa <

Πt(r
p
s , n) ≤ Πt.

B.8. Additional Lemma:

Lemma 8. Under Threshold Discounting, for any relevant price choice rs ≥ r̄, the service provider can

always choose the activation threshold n so that the deal is active when the market size is higher than a

desired level m. Further, such activation threshold is unique. That is, ∀rs ∈ (r̄, rh) and∀m > 0 ∃!n (rs,m) :

n (rs,m) /H̄ (v̂t (rs, n (rs,m))) = m.

Note that n/H̄ (v̂t (rs, n)) is continuous in n. Also, note that limn→0 n/H̄ (v̂t (rs, n)) = 0 and further

note that limn→+∞ n/H̄ (v̂t (rs, n)) = +∞. For the former, note that H̄ (v̂p) > 0, as it can be seen by

looking at (B.9) and noting that for any r ∈ [r̄, rh] we have H (v̂p (r)) > 1/2, hence RHS < 1, imply-

ing v̂p (r) < vh − (rh − r) < vh, hence limn→0 H̄ (v̂t (rs, n)) = H̄ (v̂p (rs)) > 0. It is then left to show

that d
dn (n/H̄ (v̂t (rs, n))) > 0. Suppose not. Then, it must be that d

dnH̄ (v̂t (rs, n)) > 0, which implies

∂
∂n v̂t (rs, n) < 0 and hence d

dnLHSt (v̂t (rs, n) , rs) < 0.

From d
dy (
´ +∞
y

min (1, k/(H (v̂t)x)) dGc(x) /
´ +∞
y

min
(
1, k/(H̄ (v̂t)x)

)
dGc(x)) < 0 and considering that

d
dv̂t

(min(1, k/(H (v̂t)x)) /min
(
1, k/(H̄ (v̂t)x)

)
) < 0, we have that d

dn (n/H̄ (v̂t (rs, n))) ≤ 0, implying that

d
dnRHSt(v̂t(rs,n), n)>0, and d

dnLHSt (v̂t (rs, n) , rs) < 0 cannot hold.

B.8.1. Reverse threshold discounting. In order to isolate the e�ect of a responsive discounting deci-

sion on the �rm pro�t, we consider a population of non-strategic customers. Let reverse threshold
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discounting be an o�er in which the �rm opens up in the slow period o�ering a discounted price

rs < rh if less than n customers subscribe to the o�er. Then we have the following result�the result

holds even when cF = 0.

Lemma 9. Suppose that customers are non-strategic. Then, reverse threshold discounting yields a

lower pro�t compared to the traditional approaches.

Proof. Let (rrs , n
r) = arg maxrs,n Πµ

r (rs, n), where

Πµ
r (rs, n) =

n/αs(rs;µ)ˆ

0

[rh min (k, αh (rs;µ)x) + rs min (k, αs (rs;µ)x)− 2cF ] dG (x)

+

+∞ˆ

n/αs(rs;µ)

[rh min (k, x)− cF ] dG (x) ,

with αh (rs;µ) = H (rs + vh − rh) and αs (rs;µ) = H̄ (rs + vh − rh). We then have two cases. If

nr/αs (rrs ;µ) < x◦, then

Πr =

nr/αs(rrs ;µ)ˆ

0

[rh min (k, αh (rrs ;µ)x) + rrs min (k, αs (rrs ;µ)x)− 2cF ] dG (x) +

+

+∞ˆ

nr/αs(rrs ;µ)

[rh min (k, x)− cF ] dG (x) <

<

nr/αs(rs;µ)ˆ

0

[rh min (k, x)− cF ] dG (x) +

+∞ˆ

nr/αs(rs;µ)

[rh min (k, x)− cF ] dG (x) = Πc;

if instead nr/αs (rs;µ) > x◦, then

Πr =

nr/αs(rrs ;µ)ˆ

0

[rh min (k, αh (rrs ;µ)x) + rrs min (k, αs (rrs ;µ)x)− 2cF ] dG (x) +

+

+∞ˆ

nr/αs(rrs ;µ)

[rh min (k, x)− cF ] dG (x) <
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<

nr/αs(rs;µ)ˆ

0

[rh min (k, αh (rrs ;µ)x) + rrs min (k, αs (rrs ;µ)x)− 2cF ] dG (x) +

+

+∞ˆ

nr/αs(rs;µ)

[rh min (k, αh (rrs ;µ)x) + rrs min (k, αs (rrs ;µ)x)− 2cF ] dG (x) =

= Πµ
p (rrs) ≤ Πµ

p .

�

B.9. The Strategic scarcity e�ect. See subsubsection B.7.1

B.10. Theorem 8. Suppose a fraction γ ∈ (0, 1) of the population is strategic, the rest being myopic, i.e.

they do not account for the strategy of other customers, hence their visit decision is only a function of price,

where a customer with valuation for the slow period vs is better o� subscribing, and visiting in the slow

period conditional on the deal being active, i� vs − rs > vh − rh. De�ne v̂m (rs) = vh − rh + rs as the

valuation of the myopic indi�erent customer, and let

αt (rs, n, γ) = (1− γ)H (v̂m (rs)) + γH (v̂t (rs, n, γ))

be the fraction of customers subscribing to the deal (and visiting in the slow period when the deal is on),

where v̂t (rs, n, γ) is the solution to

(B.10)
v̂t − rs
vh − rh

=

´ +∞
n

(1−γ)H(v̂m(rs))+γH(v̂t)
min

(
1, k

x((1−γ)H(v̂m(rs))+γH(v̂t))

)
dGc(x)

´ +∞
n

(1−γ)H(v̂m(rs))+γH(v̂t)
min

(
1, k

x((1−γ)H̄(v̂m(rs))+γH̄(v̂t))

)
dGc(x)

and is unique in equilibrium since the LHS is increasing in v̂t and the RHS is decreasing in v̂t when

rs : ((1− γ)H (v̂m (rs)) + γH (v̂t)) ≥ 1
2 , which can be shown to be always true in equilibrium following

the same steps as for the case γ = 1. It is easy to prove that all monotonicity properties needed to prove

the results in the previous sections are maintained, the only non-obvious being d
drs
αt (rs, n, γ) > 0, i.e.

that an increase in price shifts more demand to the hot period, mainly because now both the LHS and

RHS of (B.10) are a function of the price rs, hence the old arguments are no longer su�cient. To show

that d
drs
αt (rs, n, γ) > 0, let LHSt (v̂t (rs, n, γ) , rs) and RHSt (v̂t (rs, n, γ) , v̂m (rs) , γ, n) be the LHS and

RHS of (B.10). It is trivial to show that αt (rts, n
t, γ) ≥ 1

2 ∀γ. Now, suppose that d
drs
αt (rs, n, γ) ≤ 0

for some rs, n, γ. Then 0 < d
drs

(1− γ)H (v̂m (rs)) ≤ − d
drs
γH (v̂t (rs, n, γ)), hence d

drs
v̂t (rs, n, γ) < 0.

Since rs ≥ r̄ ⇒ αt (rs, n, γ) ≥ 1
2 ∀γ and d

drs
αt(rs, n, γ)≤ 0, we have d

drs
RHSt(v̂t(rs, n, γ), v̂m(rs), γ, n)≥ 0,
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hence it must be d
drs
LHSt(v̂t(rs, n, γ), rs)≥ 0, but this is impossible because d

drs
LHSt (v̂t (rs, n, γ) , rs) =

(vh − rh)−1( d
drs
v̂t − d

drs
rs) < 0 since d

drs
v̂t (rs, n, γ) < 0. The result is then proven by contradiction.

B.11. Theorem 9. First we show that, ∀rs ≥ r̄ and 1 > γ2 > γ1 > 0, we have that v̂t (rs, n, γ2) >

v̂t (rs, n, γ1). De�ne α̂t (rs, v̂, γ) = (1− γ)H (v̂m (rs)) + γH (v̂t). Note that, ∀rs ≥ r̄ and 1 > γ2 > γ1 > 0,

we have that RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ1, n) < RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ2, n). In fact

RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ1, n) =

´ +∞
n

1−α̂t(rs,v̂t,γ1)
min

(
1, k

xα̂t(rs,v̂t,γ1)

)
dGc(x)

´ +∞
n

1−α̂t(rs,v̂t,γ1)
min

(
1, k

x(1−α̂t(rs,v̂t,γ1))

)
dGc(x)

<

<

´ +∞
n

1−α̂t(rs,v̂t,γ1)
min

(
1, k

xα̂t(rs,v̂t,γ2)

)
dGc(x)

´ +∞
n

1−α̂t(rs,v̂t,γ1)
min

(
1, k

x(1−α̂t(rs,v̂t,γ2))

)
dGc(x)

≤

´ +∞
n

1−α̂t(rs,v̂t,γ2)
min

(
1, k

xα̂t(rs,v̂t,γ2)

)
dGc(x)

´ +∞
n

1−α̂t(rs,v̂t,γ2)
min

(
1, k

x(1−α̂t(rs,v̂t,γ2))

)
dGc(x)

,

where the last term is equal to RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ2, n). The �rst inequality comes by noting

that min (1, k/(xα̂t (rs, v̂t, γ))) /min (1, k/(x (1− α̂t (rs, v̂t, γ)))) is decreasing in γ due to ∂
∂γ α̂t (rs, v̂t,γ1

, γ) >

0 since v̂t,γ1 < vh−rh+rs, which comes from (v̂t (rs, n, γ1)−rs)/vh−rh = LHSt (v̂t (rs, n, γ1) , rs) which is also

equal to RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ1, n), which is less than one, hence less than (v̂m (rs)− rs)/(vh − rh),

implying that v̂m (rs) > v̂t (rs, n, γ1). The second inequality comes from ∂
∂γ α̂t (rs, v̂t, γ) > 0 and from

min (1, k/(xα̂t (rs, v̂t, γ))) /min (1, k/(x (1−α̂t (rs, v̂t, γ)))) decreasing in x. RHSt(v̂t(rs, n, γ1) , v̂m (rs) , γ1, n)<

RHSt (v̂t (rs, n, γ1) , v̂m (rs) , γ2, n), and since LHSt(v̂t, rs) increases but RHSt(v̂t (rs, n, γ) , v̂m (rs) , γ, n) de-

creases in v̂t, then for the condition LHSt(v̂t(rs, n, γ2) , rs) =RHSt (v̂t (rs, n, γ2) , v̂m (rs) , γ2, n) to hold it

must be that v̂t (rs, n, γ2) > v̂t (rs, n, γ1).

If we now rewrite RHSt (v̂t (rs, n, γ) , v̂m (rs) , γ, n) as RHSt (αt (rs, n, γ) , n), it must be that

RHSt (αt (rs, n, γ1)) = LHSt (v̂t (rs, n, γ1) , rs) < LHSt (v̂t (rs, n, γ2) , rs) = RHSt (αt (rs, n, γ2)) ,

since RHSt (αt (rs, n, γ) , n) decreases in αt, it follows that αt (rs, n, γ1) > αt (rs, n, γ2). The result is then

proven following the usual argument that since demand is more evenly balanced between the two periods

with γ2 compared to γ1, the service provider can always earn a higher pro�t by increasing the price in the

slow period so to achieve in every market state the same capacity utilization and a strictly higher average

margin.

B.12. Type II equilibria do not exist when there are myopic customers in the population. When

a fraction γ of customers in the population are strategic, the incremental expected surplus ∆u for customer i

with slow-period valuation vs,i by subscribing to the deal when all other strategic customers do not subscribe
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is

∆u (vs,i; v̂t,−i = vh, γ) = Ḡc
(
ntᾱ

−1
m

) +∞ˆ

ntᾱ
−1
m

[
min

(
1, k x−1

)
(vh − rh)−min

(
1, k (ᾱmx)

−1
)

(vs − rs)
]

dGc (x) ,

where ᾱm = (1− γ) H̄ (vh − rh + rs) is the fraction of the population that subscribes to the deal and

visits in the slow period when the deal is active. For vs,i high enough and γ < 1, customer i has a

strictly positive incremental surplus from subscribing, hence there can exists no equilibrium where strategic

customers coordinate to never subscribe to the deal.

Design considerations in Threshold Discounting O�ers.

B.13. Theorem 10. In order to show that committing to a threshold activation strategy does not reduce

the ability of the service provider to exploit the information that the number of subscribers reveals, we need

to show that the optimal activation decision is always of a threshold type. First, note that for any activation

strategy A (ro, n) that the �rm may use after announcing a discounted price ro and upon observing the

number of subscribers n, A (ro, n) : [0, rh] × R+ 7−→ {0, 1}, where 1 stands for activate and 0 stands for

not activate, the optimal subscription strategy for customers is always of a threshold type, since (B.3) still

applies, as the expected gain from subscribing always increases in customer valuation for the slow period vs.

This implies that a higher number of subscribers is associated to a higher market realization. Note also that

the service provider can always infer market realization x upon observing the number of subscribers n once

he knows customer subscription strategy v̂o.

Consider now the expected pro�t gain of the service provider from activating the deal for a given market

realization x and an announced price ro:

min (k, xH (v̂o)) (rh − c) + min
(
k, xH̄ (v̂o)

)
(ro − c)− cF −min (k, x) (rh − c) .

Similarly to what shown in Lemma 2, there exists a market realization x◦o (ro) such that the above is

negative for x ≤ x◦o (ro) and positive otherwise, with x◦o (ro) being the market realization that makes the

provider indi�erent between activating or not. It follows that the optimal activation decision is always to

activate the deal i� x > x◦o (ro), hence the provider can set this decision upfront without any loss in pro�t.

On the other hand, when the activation threshold is announced upfront, customer subscription decision is a

function of it. Let Πo (ros) be the equilibrium pro�t under Opaque activation rule. Then we have

Πo (ros)=

x◦o(ros)ˆ

0

(min(k, x)(rh−c)−cF )dG(x) +

125



www.manaraa.com

+

+∞ˆ

x◦o(ros)

(
min(k, xH(v̂o(r

o
s)))(rh−c)+min

(
k, xH̄(v̂o(r

o
s))
)
(ros−c)−2cF

)
dG(x) =

=

n◦
H̄(v̂t(ros,n◦))ˆ

0

(min(k, x)(rh−c)−cF )dG(x) +

+

+∞ˆ

n◦
H̄(v̂t(ros,n◦))

(
min (k, xH(v̂t (ros , n

◦)))(rh−c)+min
(
k, xH̄(v̂t (ros , n

◦))
)
(ros− c)−2cF

)
dG(x) =

= Πt (ros , n
◦) ≤ Πt

(
rts, n

t
)

where the second inequality comes from the fact that for every announced price ros under Threshold

Discounting, the provider can always set a threshold n◦ such that n◦/H̄ (v̂t (ros , n
◦)) = x◦o (ros), for Lemma 8.

B.14. Theorem 11. The equilibrium for a threshold discounting policy with late disclosure is very similar

to the one arising from threshold discounting and so is the proof, which is omitted for brevity. The customer

subscription and visit strategy v̂l (rs, n) is given by

(B.11)
v̂l − rs
vh − rh

=

´ +∞
0

min
(

1, k
H(v̂l)x

)
dGc(x)

´ +∞
n

H̄(v̂t)

min
(

1, k
H̄(v̂l)x

)
dGc(x)

,

and the pro�t is given by

Πl=max
rs,n

(rh−c)

n
ᾱl(rs,n)ˆ

0

[min(k, αl(rs,n)x)−cF ] dG(x)+

+

+∞ˆ
n

ᾱl(rs,n)

[min(k,αl(rs,n)x)(rh−c)+min(k,ᾱt(rs,n)x)(rs−c)−2cF ] dG(x)

s.t. rs < rh, n > 0,

where αl (rs, n) = H (v̂l (rs, nt)) is the fraction of customers subscribing to the deal, and where ᾱt (rs, n) =

1 − αt (rs, n). Let's de�ne the LHS and RHS of (B.11) as LHSl (v̂l, rs) and RHSl (v̂l, n). Let n̂t (r) :

n̂t/(1−αt (r, n̂t)) = n/ᾱl(rs, n), and take r̂t ≥ rs : αt (r̂t, n̂t) ≥ 1
2 , which clearly always exists. Then we have

that

Πl=(rh−c)

n

ᾱl(rls,nl)ˆ

0

[
min

(
k, αl

(
rls,n

l
)
x
)
−cF

]
dG(x)+

+∞ˆ

nl

ᾱl(rls,nl)

[
min

(
k,αl

(
rls,n

l
)
x
)
(rh−c)+min

(
k,ᾱt

(
rls,n

l
)
x
)(
rls−c

)
−2cF

]
dG(x)<
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< (rh−c)

nl

ᾱl(rls,nl)ˆ

0

[min(k,x)−cF ] dG(x) +

+∞ˆ

nl

ᾱl(rls,nl)

[
min

(
k,αl

(
rls,n

l
)
x
)
(rh−c)+min

(
k,ᾱt

(
rls,n

l
)
x
)(
rls−c

)
−2cF

]
dG(x)≤

≤(rh−c)

n̂t
1−αt(r̂t,n̂t)ˆ

0

(min(k,x)−cF )dG(x)+

+∞ˆ
n̂t

1−αt(r̂t,n̂t)

(
min(k, αt (r̂t, n̂t)x)(rh−c)+min(k,(1−αt (r̂t, n̂t))x)

(
rls−c

)
−2cF

)
dG(x)=

= Πt (r̂t, n̂t) ≤ Πt.

B.15. Theorem 12. With arguments similar to the ones used for Threshold Discounting, it can be shown

that there exists a unique v̂u (ru, nu) such that customers do not subscribe and always consume in the hot

period if vs ≤ v̂u (ru, nu), and subscribe to the deal and visit in the slow period i� the deal is on otherwise,

with v̂u being given by

v̂u − r
vh − r

=

´ +∞
nu

H̄(v̂u)

min
(

1, k
H(v̂u)x

)
dGc(x)

´ +∞
nu

H̄(v̂h)
min

(
1, k

H̄(v̂u)x

)
dGc(x)

.

Let LHSu (v̂u, ru) and RHSu (v̂u, nu) be the LHS and RHS of the above equation. For any price ru

and threshold nu, we have H (v̂u (ru, nu)) > 1/2 as the discount is o�ered on both periods, making the hot

period always the more attractive regardless of the pricing decision. Clearly, RHSt (v̂, n) = RHSu (v̂, n)

and LHSt (v̂, r) > LHSu (v̂, r). It follows that under Threshold Discounting the provider achieves a higher

pro�t by choosing r′s > rus and n′t (r′s) such that n′tH̄ (v̂t (r′s, n
′
t))
−1

= nuH̄ (v̂u (rus , n
u))
−1
, which is always

possible in light of Lemma 8, and so that both r′s ≤ rh and H (v̂t (r′s, n
′
t)) ≤ H (v̂u (rus , n

u)) are satis�ed with

at least one of them binding, which is accomplished setting r′s high enough, due to LHSt and H (v̂t) being

increasing with respect to rs. Formally, letting α∗u = H (v̂u (rus , n
u)) and α′t = H (v̂t (r′s, n

′
t)), we have

Π∗u=

nu

1−α∗uˆ

0

[min(k, x)(rh−c)−cF ] dG(x) +

+∞ˆ
nu

1−α∗u

[min(k, α∗ux)(rus−c)+min (k, (1−α∗u)x)(rus−c)−2cF ] dG(x)<

<

nu

1−α∗uˆ

0

[min(k, x)(rh−c)−cF ] dG(x) +

+∞ˆ
nu

1−α∗u

[
min

(
k, α

′

tx
)

(rh−c)+min
(
k,
(

1−α
′

t

)
x
)

(r′s−c)−2cF

]
dG(x)=

= Πt(r
′
s, n
′
t)≤Πt,

where the inequality follows noting that min (k, α∗ux) (rus − c) + min (k, (1− α∗u)x) (rus − c) is strictly less

than min
(
k, α

′

tx
)

(rh − c) + min
(
k,
(

1− α′t
)
x
)

(r′s − c) for every x ≥ nu

1−α∗u
.

B.16. Theorem 13. Suppose, conservatively, that the �rm purchases the extra service included in the

o�er from an external provider at the same cost that a customer would, i.e. without volume discounts or
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commissions for the advertisement and extra demand provided to the external provider�otherwise, this alone

would already make focused threshold discounting better than classic threshold discounting. Using the same

arguments as before, one can show that the subscription strategy is a threshold strategy, and that the visit

strategy is as well. For any promotion ζ and activation threshold nf , let v̂s be the valuation of a customer

that, conditional on the deal being active, is indi�erent between the two periods given that she is provided

no additional incentives, and let also v̂f be the valuation of a customer that, conditional on the deal being

active, is indi�erent between the two periods given that she earns (or is refunded) a service worth ζV , in

case she visits in the slow period. Clearly, v̂s ≥ v̂f . Since people that �nd no value in the external service

do not subscribe, let σf (v̂f ) = H (v̄s)−H (v̂f ) be the fraction of the market that subscribes, who will also

visit when deal is on. In addition to them, some non-subscribers will also visit: let ρf (v̂s) = H̄ (max (v̂s, v̄s))

be the fraction of the market that visits when the deal is on even without additional incentives. Since a

customer subscribes only if she is better o� visiting when the deal is on, in equilibrium we must have

(B.12)
v̂s − rh
vh − rh

=

´ +∞
nfσf (v̂f )−1 min

(
1, k (αf (v̂s, v̂f )x)

−1
)

dGc (x)

´ +∞
nfσf (v̂f )−1 min

(
1, k (ᾱf (v̂s, v̂f )x)

−1
)

dGc (x)
=
v̂f − rh + ζV

vh − rh
,

where αf (v̂s, v̂f ) = σf (v̂f ) + ρf (v̂s) is the fraction of the market visiting in the slow period when the

deal is active, and ᾱf (v̂s, v̂f ) = 1− αf (v̂s, v̂f ).

We now show that there exists a threshold n′f and a coupon ζ ′ such that αf

(
v̂′s, v̂

′
f

)
= αt (rts, n

t) and

also n′fσf

(
v̂′f

)−1

= ntαt (rts, n
t)
−1
, so that

Πt = (rh−c)
ntᾱ∗−1

tˆ

0

min(k, x)−cF dG(x) +

+∞ˆ

ntᾱ∗−1
t

min(k, α∗tx)(rh−c)+min(k,ᾱ∗tx)
(
rts−c

)
−2cF dG(x) <

< (rh−c)

n′f ᾱ
′−1
fˆ

0

min(k, x)−cF dG(x) +

+∞ˆ

n′f ᾱ
′−1
f

min
(
k, α′fx

)
(rh−c)+min

(
k,ᾱ′fx

)(
rh−c−

σ′f
α′f
ζ ′V

)
−2cF dG(x) =

= Πf

(
ζ ′, n′f

)
< Πf ,

where Πf is the equilibrium pro�t under focused threshold discounting. Take the announcement n′f =

nt(H (v̄s) − H (v̂∗t ))/H̄ (v̂∗t ), ζ ′ = V −1 (rh − rts). Then (B.12) is satis�ed for v̂′f = v̂∗t and v̂s = v̆t(r
t
s, n

t),

where v̆t(r
t
s, n

t) is the valuation of the customer that under threshold discounting, in equilibrium, would get

the same expected surplus in both periods when charged full price on both. In fact,

´ +∞
n′fσf(v̂′f)

−1 min

(
1, k

(
αf

(
v̂′s, v̂

′
f

)
x
)−1

)
dGc (x)

´ +∞
n′fσf(v̂′f)

−1 min

(
1, k

(
ᾱf

(
v̂′s, v̂

′
f

)
x
)−1

)
dGc (x)

=

´ +∞
ntᾱt(rts,n

t)−1 min
(

1, k (αt (rts, n
t)x)

−1
)

dGc (x)

´ +∞
ntᾱt(rts,n

t)−1 min
(

1, k (ᾱt (rts, n
t)x)

−1
)

dGc (x)
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v̂′s−rh
vh−rh

=
v̆t(r

t
s, n

t)−rh
vh − rh

=

´ +∞
ntᾱt(rts,n

t)−1 min
(

1, k (αt (rts, n
t)x)

−1
)

dGc(x)

´ +∞
ntᾱt(rts,n

t)−1 min
(

1, k (ᾱt (rts, n
t)x)

−1
)

dGc(x)
=
v̂t(r

t
s, n

t)−rts
vh − rh

=
v̂′f−rh + ζ ′V

vh − rh
.

We are left to show that
(
v̂′s, v̂

′
f

)
is the unique solution to (B.12). To keep notation simple, let the three

members of (B.12) be renamed as LHSs (v̂s), RHSf (v̂s, v̂f , nf ), and LHSf (v̂F , ζ). Note that LHSs (v̂s)

and RHSf (v̂s, v̂f , nf ) are respectively increasing and decreasing in v̂s, that LHSf (v̂f , ζ) increases in v̂f and

ζ, and that if αf (v̂s, v̂f ) > 1/2, we also have that RHSf (v̂s, v̂f , nf ) is decreasing in both v̂f and nf . Let's

consider for now only the couples (v̂s, v̂f ) : αf (v̂s, v̂f ) ≥ 1/2. Clearly there can be only a unique solution

to (B.12). In fact, suppose not, e.g. v̂s > v̄s ≥ v̂′s, then the �rst equality of (B.12) requires v̂f to decrease,

and the second equality requires v̂f to increase. The other case v̂s < v̄s is trivial since σf does not change.

Now suppose there exists a solution to (B.12) for
(
v̂•s , v̂

•
f

)
: αf

(
v̂•s , v̂

•
f

)
< 1/2. Then RHSf

(
v̂•s , v̂

•
f , n
′
f

)
> 1,

which implies v̂•f < v̂′f and v̂
•
s < v̂′s, contradicting αf

(
v̂•s , v̂

•
f

)
< 1/2 since αf (v̂s, v̂f ) decreases in both v̂s and

v̂f .
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Appendix C. Proofs and Additional Results for Part 3

Threshold discounting.

C.1. Equilibrium outcome.

Equilibrium for the customer continuation game Γ (rs, n). The strategy of an individual customer

i with valuation vector v = (vh, vs) is a vector Si =
(
σi, ν

on
i , νoffi

)
where σi, νoni , and νoffi

are functions that, for every �rm announcement (rs, n), specify whether the customer subscribes

(σi (rs, n,v) = s) or not (σi (rs, n,v) = ns), and conditional on the deal outcome ω ∈ {on, off},

specify whether the customer visits on the hot period (νωi (rs, n,v) = vh), in the slow period

(νωi (rs, n,v) = vs), or does not visit the �rm (νωi (rs, n,v) = v0). As an example, the vector

(s, vs, vh) speci�es that the customer subscribes, visits in the slow period when the deal is active,

and visits in the hot period when the deal is not active. The strategy of each customers will be a

function of the deal (rs, n), but for the customer continuation game the deal terms are exogenous

so we henceforth skip the dependance from (rs, n) to avoid excess notation. We restrict to pure

strategies for brevity, but the result of the analysis does not change if we include behavior strategies.

An equilibrium for the customer continuation game is characterized by the strategy pro�le

S =
(
σ, νon, νoff

)
, where the absence of the subscript i means that σ, νon, νoff are vectors that

summarize the strategies for every individual customer. An individual customer, after observing

her valuation vector v = (vh, vs), has twelve possible pure strategies in the customer continuation

game, given by the product {s, sn} × {vs, vh, v0} × {vh, v0}. Of these, six can be easily dis-

missed because either inconsistent or dominated by other strategies. For any given strategy pro�le

S−i =
(
σ−i, ν

on
−i , ν

off
−i

)
of all customers except i, the strategy of customer i pairs each valuation vec-

tor (vh, vs) with one among six courses of action: (ns, vh, vh), (ns, vs, vh), (ns, vs, v0), (ns, v0, v0),

(s, vs, vh), (s, vs, v0).

Clearly (ns, v0, v0) is optimal when vh < rh and vs < rs, as all other strategies yield negative

utility. (ns, vh, vh) is clearly optimal for vh > rh and vs < rs, as all other strategies yield a non-

positive utility, and (s, vs, v0) is clearly optimal for vh < rh and vs > rs for the same reason. These

strategies are equilibrium strategies for customer i regardless of S−i, hence are strategies followed

by all customers in equilibrium. For a customer with vh > rh and vs > rs, she will prefer (s, vs, vh)

to (ns, vh, vh) if her slow period valuation is higher than a threshold level v̂t(vh), given by
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(C.1) (v̂t (vh)− rs) = (vh − rh)

´ +∞
n/αts

min
(

1, k
(
αthx

)−1
)

dGc (x)

´ +∞
n/αts

min
(

1, k (αtsx)−1
)

dGc (x)
,

where αth and αts are the fraction of the population visiting in the hot and in the slow pe-

riod, according to S−i, and Gc refer to the updated market size distribution function upon cus-

tomer existence in the market. Since all customers are ex-ante equal, in equilibrium they will all

follow (C.1), with αth and αts representing the fraction of customers that do not subscribe and

visit in the hot period, and that subscribe, respectively. The above equation shows a linear re-

lation between vs and vh, hence the customers that are indi�erent between not subscribing and

visiting in the hot period, and subscribing and visiting in the slow period if the deal is active

and in the hot period otherwise, have their valuation vector lay on a line with positive slope�

the higher vh, the higher the vs needed to make a customer indi�erent between (s, vs, vh) and

(ns, vh, vh). This means that an IE will be characterized by four customer strategies, represented

by the four areas separated by dotted borders in Figure 16.2, and that αth and αts are respec-

tively given by αth (rs, n) =
´ v̄
rh

´ rs+(v̂t(τh;rs,n)−rs)(τh−rh)(v̄−rh)−1

0 h (τh, τs) dτsdτh and by the expres-

sion αts (rs, n) =
´ v̄

0

´ v̄
rs+((v̂t(τh;rs,n)−rs)(τh−rh)(v̄−rh)−1)

+ h (τh, τs) dτsdτh. For the same structural

properties of the ratio of integrals in the rhs of (C.1), the equilibrium is unique if the hot period

is busier than the slow period. It is also easy to verify that this equilibrium Pareto dominates

uninformative equilibria for the same reasons as under the base model (subsubsection B.4.6).

Firm pro�t maximizing deal. The �rm then chooses the terms of the deal in order to maximize its ex-

pected pro�t, taking into account customer aggregate response, that is,
(
rts, n

t
)

=arg maxrs,n Πt(rs, n)

s.t. rs < rh and n > 0, where Πt (rs, n) is given by (16.3).

C.2. Theorem 14.

Proof. pick any r̂ ∈ (cF /k, rh), and n̂ as the solution to n̂ = max
(
k α

t
s(r̂,n̂)

αth(r̂,n̂)
, cFr̂

)
, where n̂ < k. Then,

conditional on the deal being active, the hot period is full under threshold discounting. Clearly,

αch > αth (r̂, n̂). Hence

Πt(r̂, n̂)=

n̂αts(r̂,n̂)−1ˆ

0

[rh min(k, αchx)−cF ]dG(x)+

+∞ˆ

n̂αts(r̂,n̂)−1

[
rh min

(
k, αth(r̂, n̂)x

)
+r̂min

(
k, αts(r̂, n̂)x

)
−2cF

]
dG (x)=
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=

n̂αts(r̂,n̂)−1ˆ

0

[rh min (k, αchx)− cF ] dG (x) +

+∞ˆ

n̂αts(r̂,n̂)−1

[
rhk + r̂min

(
k, αts (r̂, n̂)x

)
− 2cF

]
dG (x) =

=

n̂αts(r̂,n̂)−1ˆ

0

[rh min (k, αchx)− cF ] dG (x)+

+∞ˆ

n̂αts(r̂,n̂)−1

[
rhk − cF + r̂min

(
k, αts (r̂, n̂)x

)
− cF

]
dG (x) >

>

n̂αts(r̂,n̂)−1ˆ

0

[rh min (k, αchx)− cF ] dG (x) +

+∞ˆ

n̂αts(r̂,n̂)−1

[rhk − cF ] dG (x) = Πc

where the last inequality follows from r̂min
(
k, αts (r̂, n̂)x

)
−cF > 0 for x > n̂αts (r̂, n̂)−1, which fol-

lows since for x̂ = n̂αts (r̂, n̂)−1 we have that r̂min
(
k, αts (r̂, n̂) x̂

)
−cF = r̂min

(
k, αts (r̂, n̂) n̂αts (r̂, n̂)−1

)
−

cF ≥ cF
k min

(
k, cFr̂

)
− cF ≥ 0. �

C.3. The three e�ects of discounting in threshold discounting.

d

dθ
Πp (θ) =

+∞ˆ

0

dαph (θ)

dθ
rh

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
xdG (x)

︸ ︷︷ ︸
operational (±)

+

(C.2) +

[
−

+∞ˆ

0

min

(
k, αps (θ)x

)
dG (x)

︸ ︷︷ ︸
margin (−)

+

kαps(θ)−1ˆ

0

(rh (1− θ)) dα
p
0 (θ)

dθ
xdG (x)

︸ ︷︷ ︸
increasedmarket (+)

]
,

where αpi (θ),i ∈ {h, s, 0} is short notation for αpi (rs (θ)).

C.4. Theorem 15.

Proof. We are going to show that there always exists a threshold n̂ > 0 low enough so that Πp <

Πt (rps , n̂) ≤ Πt, so we need to show that

n̂/αts(r
p
s ,n̂)ˆ

0

πp (x) dG (x) +

+∞ˆ

n̂/αts(r
p
s ,n̂)

πp (x) dG (x) <

n̂/αts(r
p
s ,n̂)ˆ

0

πc (x) dG (x) +

+∞ˆ

n̂/αts(r
p
s ,n̂)

πt−on (x; rps , n̂) dG (x) .

where πc (x) = rh min (k, αchx) − cF , πp (x) = rh min
(
k, αph (rps)x

)
+ rps min (k, αps (rps)x) − 2cF ,

and πt−on (x; rs, n) = rh min
(
k, αth (rs, n)x

)
+ rs min

(
k, αts (rs, n)x

)
− 2cF . If cF > 0 it is easy to

show that ∃x◦ > 0 : πc (x) > πp (x) iff x < x◦. If instead cF = 0 but αch−α
p
h (θp) > (1− θp)αps (θp),
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then this implies that πp (x) < πc (x) ∀x ∈ (0, k) because

πp (θp;x) = rhα
p
h (θp)x+ rh (1− θp)αps (θp)x < rhα

c
hx = πc (x) ,

hence once again ∃x◦ > 0 : πc (x) > πp (x) iff x < x◦. So we know that ∃n̄ > 0 such that
´ n/αts(rps ,n)

0 πp (x) dG (x) <
´ n/αts(rps ,n)

0 πc (x) dG (x) for every n ≤ n̄. We are left to show that there

exists an n̂ ∈ (0, n̄) such that

+∞ˆ

n̂/αts(r
p
s ,n̂)

[πt−on (x; rps , n̂)− πp (x)] dG (x) > 0.

This is ensured if limn→0+

´ +∞
z [πt−on (x; rps , n)− πp (x)] dG (x) > 0∀z ≥ 0, which holds if and

only if
´ +∞
z

d
dnα

t
h (rps , n)

(
1
x<k(αph(r

p
s))
−1rh − 1

x<k(αps(rps))
−1rps

)
xdG (x) > 0∀z ≥ 0, which is im-

plied by
´ +∞
z

(
1
x<k(αph(r

p
s))
−1rh − 1

x<k(αps(rps))
−1rps

)
xdG (x) < 0 ∀z ≥ 0, which is implied by

(16.4). �

C.5. Theorem 16.

Proof. let rps = maxr Πp (rps) s.t. rs ≤ rh. Then, since x ≤ k and therefore αpi (rs) = αti (rs, n) ∀rs, n >

0, this means that rps = maxrs
(
αph (rs) rh + αps (rs) r

)
subject to rs ≤ rh. We have two cases:

1. rps = rh. Then π̌p (rps ;x)− π̌c (x) = x
(
αph + αps − αch

)
> 0 and,

Πp−Πt =

nt/αts(rts,nt)ˆ

x

(π̌p (rps ;x)− π̌c (x)− cF ) dG (x)+

x̄ˆ

nt/αts(r
t
s,nt)

(
π̌p (rps ;x)− π̌t−on

(
rts, nt;x

))
dG (x) =

=

nt/αts(rts,nt)ˆ

x

(π̌p (rh;x)− π̌c (x)− cF ) dG (x) +

x̄ˆ

nt/αts(r
t
s,nt)

(
π̌p (rh;x)− π̌t−on

(
rts, nt;x

))
dG (x) =

which is strictly positive if π̌p (rh;x) − π̌c (x) − cF ≥ 0 or cF ≤ π̌p (rh;x) − π̌c (x), which is a

positive number, and where
(
rts, nt

)
= arg maxrs,n Πt (rs, n) s.t. rs < rh, n > 0.

2. rps < rh. Then td cannot do better than mimic the price of pd and

Πp −Πt =

n/αts(rts,n)ˆ

x

(π̌p (rps ;x)− π̌c (x)− cF ) dG (x) +

x̄ˆ

n/αts(rs,n)

(
π̌p (rps ;x)− π0

t

(
rts;x

))
dG (x) =
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=

n/αts(r
p
s ,n)ˆ

x

(π̌p (rps ;x)− π̌c (x)− cF ) dG (x) +

x̄ˆ

n/αts(r
p
s ,n)

(
π̌p (rps ;x)− π0

t (rps ;x)
)

dG (x) =

=

n/αts(r
p
s ,n)ˆ

x

(π̌p (rps ;x)− π̌c (x)− cF ) dG (x)

which is strictly positive if π̌p (rps ;x)− π̌c (x)− cF > 0, or cF < π̌p (rps ;x)− π̌c (x).

As per the second point in the theorem, consider that for cF > π̌p (x̄)− π̌c (x̄) we have that

Πc −Πt =

x̄ˆ

n/αts(rs,n)

[
π̌c (x)−π̌t−on

(
rts, nt;x

)
+ cF

]
dG (x) ≥

x̄ˆ

n/αts(rs,n)

[
π̌c (x)−π̌p

(
rts;x

)
+ cF

]
dG (x) > 0

�

C.6. Additional results for Section 16.

Lemma 10. The strategic scarcity e�ect

Suppose that αph (rs) > αps (rs) for some price rs. Then for every n > 0 we have that αph (rs) >

αth (rs, n) > αts (rs, n) > αps (rs).

Proof. Customer visit equation (C.1) can be rewritten focusing on the value of the visit threshold

for those customers with the highest hot period valuation, v̂t (v̄), since this uniquely de�ne v̂t (vh),

as explained in (SectionC.1):

(v̂t (v̄)− rs) = (vh − rh)

´ +∞
n/αts(v̂t(v̄)) min

(
1, k

(
αth (v̂t (v̄))x

)−1
)

dGc (x)

´ +∞
n/αts(v̂t(v̄)) min

(
1, k (αts (v̂t (v̄))x)−1

)
dGc (x)

.

The result is proven by noting that the rhs of the above equation increases in n, and decreases in

v̂t (v̄), while the lhs increases in v̂t (v̄). Hence the same logic applies as in (subsubsection B.7.1). �

Lemma 11. There exists a discount threshold θm such that the operational e�ect of discounting is

positive for all discounts lower than θm and negative otherwise. Formally, Π
′
p−op (θ) > 0 iff θ ≤ θm.

It follows that, if the operational e�ect of discounting is positive for a certain discount level θ, then

the total operational e�ect of discounting on pro�t is also positive, i.e.

Π
′
p−op (θ) > 0⇒

θˆ

0

Π
′
p−op (τ) dτ > 0.
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Proof. We show that ∃θ̈ :
´ +∞

0

dαph(θ)

dθ rh

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
xdG (x) > 0 iff θ ≤

θ̈ , which is stronger than the above condition. We prove this considering two cases.

First, suppose that
´ +∞

0

dαph(θ)

dθ rh

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
xdG (x) > 0 for a given

θ; then it must be that αph (θ) > αps (θ). Suppose not. Then

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
>

0 for every x and since
dαph(θ)

dθ < 0 then the integral cannot be positive. So αph (θ) > αps (θ), and the

condition above implies that
´ k(αph(θ))

−1

0 rhθxdG (x) <
´ k(αps(θ))

−1

k(αph(θ))
−1 rh (1− θ)xdG (x). If θ decreases,

I have that LHS shrinks and RHS grows, so the condition must still hold.

Otherwise, suppose that
´ +∞

0

dαph(θ)

dθ rh

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
xdG (x) < 0 for

some θ; then we have two subcases.

If αph (θ) > αps (θ), then
´ k(αph(θ))

−1

0 rhθxdG (x) >
´ k(αps(θ))

−1

k(αph(θ))
−1 rh (1− θ)xdG (x): if θ increases, I

have that LHS grows and RHS shrinks as long as αph (θ) > αps (θ); when it no longer holds, see the

next subcase.

If instead αph (θ) < αps (θ), then

(
1
x<k(αph(θ))

−1 − 1
x<k(αps(θ))

−1 (1− θ)
)
> 0 for every x, hence it

becomes negative once it is integrated and multiplied by
dαph(θ)

dθ < 0. �

Lemma 12. Condition Π
′
p−op (θp) > 0 implies that the hot period is busier than slow, and subject

to capacity shortages.

Proof. Suppose that more customers visit in the slow period than in the hot period.

Then
´ +∞

0

(
1
x<k(αph(θ))

−1−1
x<k(αps(θ))

−1 (1−θ)
)
xdG(x) > 0 ∀θ, hence Π

′
p−op (θp) < 0. Contra-

diction. Now, suppose that more customers visit in the hot period than in the slow period, but

there are no capacity shortages. Then, again, Π
′
p−op (θp) > 0. Contradiction. �

Lemma 13. Concavity of the three e�ects of discount on pro�t under price discrimination

• The increased market e�ect is decreasing in θ i� d
dθ2α

p
0 ≥ −bim, where bim is a positive

number;

• The operational e�ect is decreasing in θ i� | d
dθ2α

p
h| < bop, where bop is a positive number;

• The margin e�ect is always decreasing in θ.
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Proof. Note that d
dθΠ

′
p−im (θ) < 0 i�

− d
dθ

(
k

αps

)[
rh (1−θ) d

dθ
αp0

k

αpp
g

(
k

αpp

)]
︸ ︷︷ ︸

<0

+

k/αpsˆ

0

rh ddθαp0︸ ︷︷ ︸
<0

−rh (1−θ) d2

dθ2
αp0

xdG (x)<0,

and not also that d
dθΠ

′
p−op (θ) < 0 i�

d2

dθ2
αphrh

 k/αphˆ

0

θxdG (x) +

k/αpsˆ

k/αph

(1−θ)xdG (x)

+ d

dθ
αphrh

 k/αpsˆ

0

xdG (x)+
k

αps
g

(
k

αps

)(
d

dθ

k

αph
− d

dθ

k

αps

) ,
where the second component is always negative. That d

dθΠ
′
p−mg (θ) < 0 is then easy to check. �

C.7. Pro�t under threshold discounting for a mixed population of customers�extended

model.

Πγ
t = max

rs,n

[
rh

n/αts(rs,n|γ)ˆ

0

(min(k, αchx)−cF ) dG(x) +

+

+∞ˆ

n/αts(rs,n|γ)

(
min

(
k, αth (rs, n; γ)x

)
(rh−c) + min

(
k,αts (rs, n; γ)x

)
(rs−c)−2cF

)
dG(x)

]
,

(C.3)

subject to rs < rh, n > 0,

where αts (rs, n; γ) = γαts,γ (rs, n)+(1− γ)αts (rs;µ) is the fraction of the population that in equi-

librium subscribes and visits the �rm during the slow period when the deal is active, with αts (rs;µ) =
´ v̄

0

´ v̄
rs+(τh−rh)+ h (τh, τs) dτsdτh and αts,γ (rs, n)=

´ v̄
0

´ v̄
rs+((v̂t(v̄;rs,n)−rs)(τh−rh)(v̄−rh)−1)

+ h (τh, τs) dτsdτh,

with v̂t (v̄; rs, n) being the solution to

(C.4)

(v̂t(v̄)−rs)
(vh−rh)

=

´ +∞
n/(γαts,γ(v̂t(v̄))+γ̄αts(rs;µ))min

(
1, k

((
1−γαts,γ(v̂t(v̄))−γ̄αts(rs;µ)−αt0 (rs)

)
x
)−1
)

dGc(x)

´ +∞
n/(γαts,γ(v̂t(v̄))+γ̄αts(rs;µ))min

(
1, k

((
γαts,γ(v̂t(v̄)) + γ̄αts(rs;µ)

)
x
)−1
)

dGc(x)
,

where γ̄ = 1−γ, αt0 (rs) =
´ rh

0

´ rs
0 h (τh, τs) dτsdτh, and with the understanding that v̂t (v̄) is short

notation for v̂t (v̄; rs, n), and that it uniquely identi�es the slow period valuation v̂t (vh; rs, n) that

makes a strategic customer with hot period valuation vh indi�erent between strategies (s, vs, vh) and
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(ns, vh, vh), this being the straight line that connects (rh, rs) with v̂t (v̄; rs, n). Clearly, αth (rs, n; γ) =

1− αts (rs, n; γ)− αt0 (rs).

C.8. Theorem 17.

Proof. Note that

Πp =

+∞ˆ

0

[
rh min

(
k, αph (rps , γ)x

)
+ rps min (k, αps (rps , γ)x)

]
dG (x)

∂

∂γ
Πp =

+∞ˆ

0

[
rh

∂

∂γ
min

(
k, αph (rps , γ)x

)
+ rps

∂

∂γ
min (k, αps (rps , γ)x)

]
dG (x) =

=
∂

∂γ
αph (rps , γ)

+∞ˆ

0

(
1{αh(rps ,γ)x<k}rh − 1{αs(rps ,γ)x<k}r

p
s

)
xdG (x)

because ∂
∂γα

p
h =− ∂

∂γα
p
s, since ∂

∂γα
p
0 =0. From (16.4) we have

´m
0

(
1
x<k(αph(r

p
s))
−1{rh}−r

)
xdG (x)<

0, hence ∂
∂γα

p
h (rps , γ)

´ +∞
0

[
1{αh(rps ,γ)x<k}rh − 1{αs(rps ,γ)x<k}r

p
s

]
xdG (x) > 0 because ∂

∂γα
p
h < 0.

From the envelope theorem d
dγΠp(r

p
s , γ)= ∂

∂γΠp. Finally, note that from the foc of PD and TD wrt

rs we know that (γ = 0):

+∞ˆ

0

[
αs (rps)−

dα0 (rps)

drs
rps

]
xdG (x) +

+∞ˆ

0

[
dαh (rps)

drs

(
1x<kα−1

h (rps) {rh} − r
p
s

)]
xdG (x) = 0

+∞ˆ

nt/αs(rts)

[
αs
(
rts
)
−
dα0

(
rts
)

drs
rts

]
xdG (x) +

+∞ˆ

nt/αs(rts)

[
dαh

(
rts
)

drs

(
1x<kα−1

h (rts)
{rh} − rts

)]
xdG (x) = 0

Condition (16.4) implies that
´ +∞

0

[
dαs(rps)
drs

(
1x<kα−1

h (rps) {rh} − r
p
s

)]
xdG (x) < 0, which implies

that
´ +∞

0

[
αs (rps) +

dα0(rps)
drs

rps

]
xdG (x) > 0, so that

[
αs (rps) +

dα0(rps)
drs

rps

]
E [x] > 0, which implies

that αs (rps) +
dα0(rps)
drs

rps > 0. If rts < rps then from regularity assumptions it follows that αs
(
rts
)

+

dα0(rts)
drs

rts > 0, hence

[
αs
(
rts
)

+
dα0(rts)
drs

rts

] ´ +∞
nt/αs(rts)

xdG (x) > 0. Clearly, this therefore implies that

´ +∞
nt/αs(rts)

[
dαh(rts)
drs

(
1x<kα−1

h (rts)
{rh} − rts

)]
xdG (x) < 0. If instead rts > rps note that

+∞ˆ

0

[
dαh (rps)

drs

(
1x<kα−1

h (rps) {rh} − 1x<kα−1
s (rps)r

p
s

)]
xdG (x) =
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=
dαh (rps)

drs


k/αh(rps)ˆ

0

(rh − rps)xdG (x) +

k/αs(rps)ˆ

k/αh(rps)

(−rps)xdG (x)

 < 0

and
´ k/αh(rs)

0 (rh − r)xdG (x) +
´ k/αs(rs)
k/αh(rs)

(−r)xdG (x) is decreasing in r. Hence, it must be that
´ +∞
nt/αs(rts)

[
dαh(rts)
drs

(
1x<kα−1

h (rts)
{rh} − rts

)]
xdG (x) < 0.

Now take γ > 0, and let
(
rtµs , n

µ
t

)
be the pro�t maximizing deal for the non-strategic case. Then

∃∆n(γ) such that x̂t
(
rtµs , n

µ
t , 0
)
, (nµt )αts

(
rtµs , n

µ
t , 0
)−1

= (nµt + ∆n (γ))αts

(
rtµs , n

µ
t +∆n (γ) , γ

)−1
=

x̂t

(
rtµs , n

µ
t , γ
)
and αts

(
rtµs , n

µ
t , 0
)
< αts

(
rtµs , n

µ
t + ∆n (γ) , γ

)
. Hence, for γ > 0 small enough, we

have that Πµ
t

(
rtµs , n

µ
t

)
< Πγ

t

(
rtµs , n

µ
t + ∆n (γ)

)
≤ Πγ

t . �

C.9. Transaction Cost of Subscription.

Equilibrium conditions for the continuation game Γ (rs, n) after the announcement (rs, n). The equi-

librium is similar to the one described in SectionC.1, and is graphically depicted in Figure C.1.

Speci�cally, an equilibrium to the customer continuation game Γ (rs, n) is fully characterized by the

vector (v̇φ, v̈φ), whose components represent the highest slow period valuation of customers who do

not visit the �rm, which is equal to rs under threshold discouning, and the highest slow period valu-

ation of customers who visit the �rm in the hot period when the deal is active, which corresponds to

v̂t under threshold discounting. The vector (v̇φ, v̈φ), the fraction of customers that subscribe, αts,φ,

and the fraction of customers that do not visi the �rm, αt0,φ, must satisfy the equilibrium conditions

of the continuation game Γ (rs, n) for a given announcement (rs, n) of the �rm

(C.5)



v̇φ = rs + φ´+∞
n/αs,φ

min(1,k/αs,φ)dGc(x)

v̈φ = rs + (v̄ − rh)

´+∞
n/αs,φ

min(1,k/(1−αs,φ−α0,φ))dGc(x)´+∞
n/αs,φ

min(1,k/αs,φ)dGc(x)
+ φ´+∞

n/αs,φ
min(1,k/αs,φ)dGc(x)

As (v̇φ, v̈φ) = αts,φ

A0 (v̇φ) = αt0,φ

where v̈ is short notation for v̈ (v̄), with the understanding that v̈ (vh) directly follows, and where

As (v̇, v̈) ,
´ v̄

0

(´ v̄
v̇+((v̈−v̇)(τh−rh)/(v̄−rh))+ h (τh, τs) dτs

)
dτh and A0 (v̇) ,

´ rh
0

(´ v̇
0 h (τh, τs) dτs

)
dτh

are functions that compute the fraction of customers that subscribe and visit on slow when the deal
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do not subscribe;

do not visit

do not subscribe;

visit in hot period

subscribe;

deal on: visit in slow

deal off: no visit

subscribe;

deal on: visit in slow

deal off: visit in hot

(non-negligible fric�onal costs)

Figure C.1: Customer subscription and visit strategy under threshold discounting
when cusotomers incur a non-negligible subcription cost

is active, and that do not subscribe and do not visit the �rm, respectively, as de�ned geometrically

by v̇ and v̈. The remaining fraction of customers is represented by αth,φ. The equilibrium strategies

for the non-negligible transaction cost case for customers belonging to the three groups αtj,φ are the

same as per the case of customers belonging to αtj in the negligible transaction costs case.

C.10. Theorem 19.

Proof. The �rst point is simply proven because v̇φ > rs from (C.5). To show that the case of non-

negligible transaction costs leads to the �rm serving fewer customers in the slow period, note that

it must be αts (rs, n;φ) < αts (rs, n). Suppose not. Then it must be that αth (rs, n;φ) > αth (rs, n)

because αt0 (rs, n;φ) > αt0 (rs, n).

Then it must be that

´+∞
n/αts(rs,n;φ)

min(1,k/αth(rs,n;φ))dG(x)´+∞
n/αts(rs,n;φ)

min(1,k/αts(rs,n;φ))dG(x)
>

´+∞
n/αts(rs,n)

min(1,k/αth(rs,n))dG(x)´+∞
n/αts(rs,n)

min(1,k/αts(rs,n))dG(x)
because

the ratio
´+∞
n/αs

min(1,k/αh)dG(x)´+∞
n/αs

min(1,k/αs)dG(x)
increases in αs and decreases in αh. Noting that

v̈φ = v̇φ + (v̄ − rh)

´ +∞
n/αts(rs,n;φ) min

(
1, k/αth (rs, n;φ)

)
dG (x)´ +∞

n/αts(rs,n;φ) min (1, k/αts (rs, n;φ)) dG (x)
>

> rs + (v̄ − rh)

´ +∞
n/αts(rs,n) min

(
1, k/αth (rs, n)

)
dG (x)´ +∞

n/αts(rs,n) min (1, k/αts (rs, n)) dG (x)
= v̈t

and that v̇φ > r, we reach the conclusion that As (rs, v̈t) > As (v̇φ, v̈φ). Contradiction.

To show that the case of non-negligible transaction costs leads to the �rm serving more customers

in the hot period, note that the set of equations de�ning the equilibrium in Γ (rs, n;φ) for a given
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r and n is:

(C.6)

v̇φ = rs + φ´+∞
n/αts(rs,n;φ)

min(1,k/αts(rs,n;φ))dGc(x)

v̈φ = rs + φ´+∞
n/αts(rs,n;φ)

min(1,k/αts(rs,n;φ))dGc(x)
+ (v̄ − rh)

´+∞
n/αts(rs,n;φ)

min(1,k/αth(rs,n;φ))dGc(x)´+∞
n/αts(rs,n;φ)

min(1,k/αts(rs,n;φ))dGc(x)

As (v̇φ, v̈φ) = αts (rs, n;φ)

Ah (v̇φ, v̈φ) = αth (rs, n;φ)

.

Then de�ne ∆r , min

(
v̄ − rs, φ´+∞

n/αts(rs,n;φ)
min(1,k/αts(rs,n;φ))dG(x)

)
and consider a price increase of

∆r in the case of negligible transaction costs; the equilibrium in Γ (rs + ∆r, n) would be given by:

v̇t = rs + ∆r

v̈t = rs + ∆r + (v̄ − rh)

´+∞
n/αts(rs+∆r,n)

min(1,k/αth(rs+∆r,n))dGc(x)´+∞
n/αts(rs+∆r,n)

min(1,k/αts(rs+∆r,n))dGc(x)

As (v̇t, v̈t) = αts (rs + ∆r, n)

Ah (v̇t, v̈t) = αth (rs + ∆r, n)

,

which mirrors exactly the set of equations for Γ (rs, n;φ), leading to αts (rs + ∆r, n) = αts (rs, n;φ)

and αth (rs + ∆r, n) = αth (rs, n;φ). Periods are substitute goods hence αth (rs + ∆r, n) > αth (rs, n),

therefore αth (rs, n;φ) > αth (rs, n).

The third point is proven by showing that there exists (r̂s, n̂) such that Πt (r̂s, n̂) > Πt

(
rtsφ, ntφ;φ

)
,

with
(
rtsφ, ntφ

)
= arg maxrs,n Πt (rs, n;φ). Speci�cally, let r̂s = v̇φ

(
rtsφ, ntφ

)
and let n̂ = ntφ. Then,

with these two conditions in mind, it is easy to see that the equilibrium conditions in customer con-

tinuation game Γ in the two cases are identical, i.e.

v̂t= r̂s+(v̄−rh)

´+∞
n̂/αts

min(1,k/αts)dGc(x)´+∞
n̂/αts

min(1,k/αts)dGc(x)

As (r̂s, v̂t) = αs

A0 (r̂s) = α0



v̈φ= v̇φ

(
rtsφ, ntφ

)
+(v̄−rh)

´+∞
n/αs,φ

min(1,k/(1−αs,φ−α0,φ))dGc(x)´+∞
n/αs,φ

min(1,k/αs,φ)dGc(x)

As (v̇φ, v̈φ) = αs,φ

A0 (v̇φ) = α0,φ

,

�
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hence will lead to the same sales in every period and for every market size realization, but the

�rm will earn higher margins in the negligible transaction cost case, appropriating the transaction

cost that customers do not incur in the form of higher margins.

When φ → 0+, C.6 converges to the conditions for the equilibrium in the negligible transaction

cost case.

C.11. Mediated Threshold Discounting. De�ne

Π2(rs, n|η),

n/αts(rs,n)ˆ

0

rh min(k, αhx) dG (x)+

+∞ˆ

n/αts(rs,n)

[
rh min

(
k, αth(rs, n)x

)
+(1−η) rs min

(
k, αts(rs, n)x

)]
dG (x)

On the threshold:

d

dn
Π2 (rs, n|η) =

d

dn
ΠIN (rs, n|1− η) +

+∞ˆ

n/αts(rs,n)

[
rh1αth(rs,n)x<k

d

dn
αth(rs, n)x

]
dG (x)

︸ ︷︷ ︸
<0

+

+
d

dn

(
n

αts(rs, n)

)
rhg

(
n

αts(rs, n)

)[
min

(
k, αh

n

αts(rs, n)

)
−min

(
k, αth

n

αts(rs, n)

)]
︸ ︷︷ ︸

>0

d

dn
Πt−med (rs, n|η) =

d

dn
Π2 (rs, n|η) +

d

dn

(
n

αts (rs, n)

)
F︸ ︷︷ ︸

>0

>
d

dn
Π2 (rs, n|η) .

If γ = 0 then d
dnα

t
s (rs, n) = 0, hene d

dnΠt−med (rs, n|η) > d
dnΠIN (rs, n|1− η), whih implies

nt (rs) > arg max
n

ΠIN (rs, n|1− η)

s.t. n>0

= nINs (rs) ,

sine nINs (rs) is the same for every positive η. It also follows that ∀rs∃γ̄ (rs) > 0 : ∀γ ≤ γ̄ (rs) we

have nt (rs) > nINs (rs).

As per the pricing decision, note that

d

dr
Π2 (rs, n|η) =

d

dr
ΠIN (rs, n|1− η) +

+
d

dr

+∞ˆ

n/αts(rs,n)

[
rh min

(
k, αth (rs, n)x

)]
dG (x) +

d

dr

n/αts(rs,n)ˆ

0

[rh min (k, αhx)] dG (x) =

=
d

dr
ΠIN (rs, n|1− η) +
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+
d

dr

(
n

αts (rs, n)

)
rhg

(
n

αts (rs, n)

)[
min

(
k, αh

n

αts (rs, n)

)
−min

(
k, αth (rs, n)

n

αts (rs, n)

)]
︸ ︷︷ ︸

>0

+

+

+∞ˆ

n/αts(rs,n)

[
rh1x<k/αts(rs,n)

d

dr
αth (rs, n)x

]
dG (x)

︸ ︷︷ ︸
>0

>
d

dr
ΠIN (rs, n|1− η) ,

and

d

dr
Πt−med (rs, n|η) =

d

dr
Π2 (rs, n|η) +

d

dr

(
n

αts (rs, n)

)
F︸ ︷︷ ︸

>0

>
d

dr
Π2 (rs, n|η)

hene, for every n > 0,

rts (n) > arg max
rs

ΠIN (rs, n|1− η) = rINs (n)

sine rINs (n) is the same for every positive η, and the result is proven.

Finally, that the service provider earns a lower pro�t is proven by taking the optimal deal for

the intermediary,
(
rINs , nIN

)
, and noting that, thanks to our �rst result, the service provider would

earn more with the deal
(
rINs + ε, nIN

)
where ε is a positive and small enough number.

C.12. Additional results for Section 17.

Lemma 14. Equivalence between higher fraction of strategic customers and higher demand smooth-

ing under threshold discounting

Consider a �rm employing threshold discounting, and suppose that the hot period is busier than

the slow period. For any given γ1, γ2 > 0, γ1 < γ2, and for any given rs and n2 > 0, there exists a

n1 ∈ (0, n2) such that the deal (rs, n2) leads to the same market size trigger level, n1/α
t
s (rs, n1) =

n2/α
t
s (rs, n2), and the same fraction of total visitors, αth (rs, n1) + αts (rs, n1) = αth (rs, n2) +

αts (rs, n2), but to fewer visitors in the slow period, αts (rs, n1) > αts (rs, n2).

Proof. Let's begin by noting that, by construction, n1 = n2 ∗ αts (rs, n1, γ1)αts (rs, n2, γ2)−1 implies

that n1α
t
s (rs, n1, γ1)−1 = n2α

t
s (rs, n2, γ2)−1. The existence of a solution is due to the fact that

n
αts(rs,n,γ) is increasing in n, for the same reasons as for the base model. It remains to show that

αts (rs, n1, γ1) > αts (rs, n2, γ2). Consider that αth and αts are uniquely de�ned�geometrically�by

v̂t (vh; rs, n) and rs, hence customer subscription equations can be written as
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v̂t (vh; rs, n1)−rs
vh − rh

=

´ +∞
n1/αts(v̂t(vh;rs,n1);rs)

min
(

1, k
((
γ1α

t
h(v̂t(vh; rs, n1) ; rs) + γ̄1α

µ
h(rs)

)
x
)−1
)

dG (x)

´ +∞
n1/αts(v̂t(vh;rs,n1);rs)

min
(

1, k((γ1αts(v̂t(vh; rs, n1) ; rs) + γ̄1α
µ
s (rs))x)

−1
)

dG (x)

v̂t (vh; rs, n2)−rs
vh − rh

=

´ +∞
n2/αts(v̂t(vh;rs,n2);rs)

min
(

1, k
((
γ2α

t
h (v̂t (vh; rs, n2) ; rs) + γ̄2α

µ
h(rs)

)
x
)−1
)

dG (x)

´ +∞
n2/αts(v̂t(vh;rs,n2);rs)

min
(

1, k((γ2αts (v̂t (vh; rs, n2) ; rs) + γ̄2α
µ
s (rs))x)

−1
)

dG (x)

with γ̄1 = 1 − γ1 and γ̄2 = 1 − γ2. Let v̂2 (vh) be the solution to the latter equation. Then

RHS (v̂2 (vh) , rs, n2, γ2) > RHS (v̂2 (vh) , rs, n1, γ1) because availability is lower on slow relative to

hot when you have more strategic customers. Hence LHS (v̂2 (vh) , rs) > RHS (v̂2 (vh) , rs, n1, γ1),

which means that the solution to the former equation, v̂1(vh), will be lower than v̂2(vh), hence

LHS(v̂1 (vh) , rs) < LHS (v̂2 (vh) , rs), hence RHS (v̂1 (vh) , rs, n1, γ1) < RHS (v̂2 (vh) , rs, n2, γ2),

hence relative availability of hot vs slow must be higher in the latter equation, and since total

visitors are the same because rs is the same under both cases, this implies that αts (rs, n1, γ1) >

αts (rs, n2, γ2). �

De�nition 1. Let (αh, αs) be the fractions of the population that, respectively, visit in the hot and

in the slow period. We say that demand under (αh1, αs1) is more smoothed than under (αh2, αs2)

if αh1 + αs1 = αh2 + αs2 and |αh1 − αs1| < |αh2 − αs2|.

Let πµp (x; rs, ζ) , rh min
(
k,
(
(1− ζ)αµh (rs) + ζᾱ0 (rs) /2

)
x
)
+rs ((1− ζ)αµs (rs) + ζᾱ0 (rs) /2)x−

2cF be the pro�t of the �rm when customers are non-strategic, the market size is x, the �rm opens

in the slow period charging a discounted price rs, and the additional smoothing factor is equal to

ζ, with αµs (rs) =
´ v̄

0

´ v̄
rs+(τh−rh)+ h (τh, τs) dτsdτh, α

µ
h (rs) =

´ v̄
rh

´ rs+(τh−rh)+

0 h (τh, τs) dτsdτh, and

with ᾱ0 (rs) = 1 − α0 (rs), where α0 (rs) is de�ned as α0 (rs) =
´ rh

0

´ rs
0 h (τh, τs) dτsdτh. When

ζ = 0, πµp (x; rs, 0) is equal to the pro�t of the �rm under price discrimination, and under threshold

discounting when the deal is active. Increasing ζ results in a progressively more smoothed demand,

and for ζ = 1 demand is the same in both service periods. We consider the non-strategic case so

that demand smoothing is fully and exogenously controlled by ζ.

Lemma 15. Demand smoothing has diminishing returns on pro�t, that is,
´ +∞

0 π (x; rs, ζ) dG (x)

is concave in ζ.

Proof.
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∂

∂ζ
πµp (x; rs, ζ)=rh1{x<k/((1−ζ)αµh(rs)+ζᾱ0(rs)/2)}x

(
−αµh (rs)+ᾱ0 (rs)/2

)
+rsx (−αµs (rs)+ᾱ0 (rs) /2)=

= rh1{x<k/((1−ζ)αµh(rs)+ζᾱ0(rs)/2)}x
(
−αµh (rs) + αµs (rs)

)
/2 + rsx

(
−αµs (rs) + αµh (rs)

)
=

=
(
rh1{x<k/((1−ζ)αµh(rs)+ζᾱ0(rs)/2)} − rs

)
x
(
−αµh (rs) + αµs (rs)

)
.

Note that ∂2

∂ζ2π
µ
p (rs, ζ;x) = 0. However,

∂2

∂ζ2
Πµ
p (rs, ζ) =

∂

∂ζ

k/((1−ζ)αµh(rs)+ζᾱ0(rs)/2)ˆ

0

− [rh−rs]
(
αµh (rs)−αµs (rs)

)
xdG (x) +

∂

∂ζ

+∞ˆ

k/((1−ζ)αµh(rs)+ζᾱ0(rs)/2)

[rs]
(
αµh (rs)−αµs (rs)

)
xdG (x) =

=
∂

∂ζ

(
k/
(
(1− ζ)αµh (rs) + ζᾱ0 (rs) /2

))
︸ ︷︷ ︸

>0 iff αµh>α
µ
s

−rh (αµh (rs)− αµs (rs)
)︸ ︷︷ ︸

<0 iff αµh>α
µ
s

 ·
· k/

(
(1− ζ)αµh (rs) + ζᾱ0 (rs) /2

)
G
(
k/
(
(1− ζ)αµh (rs) + ζᾱ0 (rs) /2

))︸ ︷︷ ︸
>0

< 0

�
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Appendix D. Summary Of Notation

Notation Description

d vector representing the deal announced by the �rm. This vector includes the slow

period price for all approaches, and also includes the activation threshold for the

approach t.

Πγ
j (d) expected �rm pro�t of approach j when the deal vector announced by the �rm is d

and the fraction of strategic customers is γ ∈ [0, 1].

πγj (d, x) ex-post pro�t of approach j when the deal vector announced by the �rm is d, the

fraction of strategic customers is γ ∈ [0, 1], and the realized market size is x.

πγt−on (d, x) ex-post pro�t of approach t when the threshold is reached, the deal vector

announced by the �rm is d, the fraction of strategic customers is γ ∈ [0, 1], and the

realized market size is x.

π̌γj (d, x) ex-post variable pro�t of approach j when the deal vector announced by the �rm is

d, the fraction of strategic customers is γ ∈ [0, 1], and the realized market size is x.

rγj equilibrium price charged by the �rm in the slow period under approach j.

αji (d; γ) fraction of the market that visits in period i ∈ {h, s, 0} under approach j when the

deal vector announced by the �rm is d and the fraction of strategic customers in the

population is γ.

v̂j equilibrium slow period discount under approach j, where θj = 1− rjs/rh

θj equilibrium slow period valuation for the marginal customer under approach j

Note:1 j ∈ {c, p, t} is a subscript that identi�es the approach used (closure, price discrimination,

threshold discounting)

Note2: the symbol γ may be omitted for brevity. The case of non-strategic customers (γ = 0)

deserves special attention and is always identi�ed by replacing γ with µ, e.g. Πµ
j (d), αji (d;µ)etc.

Note3: when a pro�t symbol appears without the deal vector d, it refers to the equilibrium

announcement vector, i.e. Πγ
j , π

γ
t−on (x) refer to the equilibrium pro�t.
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